
z/OS

Parallel Sysplex Application Migration

SA22-7662-00

���

z/OS

Parallel Sysplex Application Migration

SA22-7662-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix. Notices”
on page 183.

First Edition, March 2001

This edition applies to Version 1 Release 1 of z/OS (5694-A01), and to subsequent releases and modifications until
otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . ix

About This Publication . xi
Who Should Use This Publication xi
How to Use This Publication . xii

Notes on Terminology . xii
Notes on Product Availability xii

Where to Find More Information xiii
Related Publications in Other Libraries xiii

Using LookAt to look up message explanations xiv
Accessing licensed books on the Web xv

Part 1. Introduction . 1

Chapter 1. Sysplex Benefits for Online Transaction Processing 3
Benefits of Data Sharing in a Sysplex 3

IMS DB Multisystem Data Sharing 4
DB2 Multisystem Data Sharing 4
VSAM Record Level Sharing 5
CICS Data Sharing Facilities 5

Benefits of Running IMS in a Sysplex Environment 6
Running IMS TM in a Sysplex Environment. 6
Running IMS DB in a Sysplex Environment. 7
Application and Data Compatibility 7

Benefits of Running CICS in a Sysplex Environment 7
A CICS Complex (CICSplex) 7
The CICS Resource Manager Regions for Sysplex Operation 8
Application and Data Compatibility 8
Pre-sysplex Reasons for Splitting CICS into Resource Manager Regions . . . 8
Extra Benefits Provided by the Sysplex 10
CICSPlex System Manager/ESA 12
Cross-System MRO . 13

General Considerations. 13
VTAM Support for the Sysplex 13
Security . 15

Naming Conventions . 15

Chapter 2. Planning the Subsystem Configuration for a Sysplex 17
Prerequisite Hardware and Software 17
The Target Configuration . 19

The Target Subsystems. 19
The CICS Terminal-Owning Regions 20
The CICS Application-Owning Regions 21
The CICS File-Owning Regions 22
The CICS Queue-Owning Regions 22
The IMS DBCTL Environment 22
The DB2 Subsystems . 23
The IMS Online Environment. 23
The CICSPlex SM Address Space. 23

Part 2. Migrating CICS Applications . 25

© Copyright IBM Corp. 1994, 2001 iii

Chapter 3. Planning Naming Conventions for CICS and Related
Subsystems . 27

What to Consider When Planning Naming Conventions 27
CICS . 27
IMS DB . 27
DB2 . 27
IRLM . 28
CICSPlex SM . 28
Other Considerations . 28

Designing Effective Naming Conventions 30
The Naming Convention . 31
Applying the Naming Conventions for CICS 34

For CICS VTAM APPL Names (APPLIDs) 34
For SYSIDNT Names . 36
For CONNECTION Names 36
For SESSIONS Definitions with and without Prefixes 39
For TERMINAL Names . 42
For CICS JOB Names . 43
For Data Set Names . 44

Sharing CICS System Data Sets 45
CICS System Definition Data Set 45
CICS Journal Partitioned Data Set. 45
SYSIN Data Set . 45
Defining the Shared CICS Data Sets 45

Example of Using the Naming Convention 46
Six CPCs and Six MVS Images. 46
The Terminal-Owning Regions 46
IMS DBCTL and DB2 Workloads 46

Chapter 4. Planning the Terminal-Owning Regions 49
Transaction Routing . 49

Static and Dynamic Transaction Routing 49
Splitting CICS into Separate Terminal- and Application-Owning Regions 50
Planning Migration to Dynamic Transaction Routing 53

Transaction Affinities . 53
Detecting Inter-transaction Affinities 54
Planning a Dynamic Transaction Routing Program 56
Using CICSPlex SM . 57

Planning for VTAM Generic Resources 58
Defining the Coupling Facility Structure 58
Defining Security Authorizations. 58
Setting Trace Options . 59
Defining the Generic Resource Name to CICS 59
Migrating to VTAM Generic Resources 59

Implementing VTAM Persistent LU-LU Sessions. 62
Cloning the CICS Terminal-Owning Regions 62

Chapter 5. Planning the Application-Owning Regions 65
Achieving the Optimum Level of Processor Utilization. 65

The Effect of Workload Balancing on Capacity Planning 65
CICS and Multiprocessor Capacity of an n-way CPC 65
The Ratio of AORs to TORs 67

Achieving the Required Transaction Throughput. 67
Estimating the Throughput Rate 67

Achieving the Required Level of Availability 68
START Commands In a Dynamic Transaction Routing Environment 69

iv z/OS V1R1.0 Parallel Sysplex Application Migration

Start Commands that Do Not Specify TERMID 70
START Commands that Specify TERMID 70

Chapter 6. Planning for VSAM Record-Level Sharing. 73
Concepts and use of RLS . 73

Coupling Facility Requirements for VSAM Record-level Sharing 74
Data Set Eligibility. 74
Restrictions for Data Sets Defined with IMBED 74
Choosing Between RLS-Mode and Non-RLS Mode 74
Restricting Switching Between RLS Mode and Non-RLS Mode Access . . . 75
General Rule About Switching Opening Modes 75
Switching Modes Exception for Read-Only Operations 75
Resolving Retained Locks . 76

Preparing for RLS . 76
Read Integrity . 76
The LOCKED Exception Condition. 76
Defining the Coupling Facility Structures 77
Defining the Sharing Control Data Sets 78
Defining SMS Storage Classes 78
Defining IGDSMSxx Parameters in SYS1.PARMLIB 78
Defining Deadlock Time Intervals 78
Defining recovery attributes for VSAM Data Sets 79

Planning Migration and Coexistence 79
Fallback Planning . 81

Chapter 7. Planning for Temporary Storage Data Sharing 83
TS Pools and the Coupling Facility 84
Defining Shared TS Queues . 84
The TS Data Sharing Server . 85
The Subsystem Interface . 85
Security . 86

Chapter 8. Planning for Coupling Facility Data Tables 87
Comparison with User-maintained Data Tables 87
Coupling Facility Data Table Models 87
CFDT Pools and the Coupling Facility 88
Defining a Coupling Facility Data Table 89
The Coupling Facility Data Table Server 89
The Subsystem Interface . 89
Security . 90

Chapter 9. Planning for Named Number Counters 91
The Named Counter Application Programming Interfaces 91
Named Counter Pools and the Coupling Facility. 92
Defining a Named Counter Options Table 93
The Named Counter Server . 93
The Subsystem Interface . 93
Security . 94

Chapter 10. Planning Resource-Owning Regions 95
Planning the File-Owning Regions 95

Function Shipping . 95
Planning the Number of File-Owning Regions 96
Ensuring Availability of the Data 98
Capacity Planning Considerations 98
Data Integrity Considerations. 99

Contents v

Planning the Queue-Owning Regions 100
Avoiding Inter-transaction Affinity Associated with CICS Queues 101
Creating a Queue-Owning Region 102
Data Integrity Considerations 106

Chapter 11. Planning for IMS DBCTL Multisystem Data Sharing with CICS 109
Migrating from CICS Local DL/I to IMS DBCTL 109

When Databases Need to be Migrated. 109
Migrating CICS Parameters to IMS DBCTL 110

Creating Multiple DBCTL Subsystems 111
The CICS Database Resource Adapter Startup Table 111
Naming the DBCTL Subsystems 111

Converting a CICS Shared-Database Program to a BMP Program 112
Creating the Data Sharing Environment 112

Database Recovery Control 112
Internal Resource Lock Manager (IRLM) 113
Defining IMS Coupling Facility Structures 113

Chapter 12. Planning for DB2 Subsystem Access from CICS Regions 115
Creating Multiple DB2 Data Sharing Subsystems 115

Using a Common Resource Control Table 115
Naming the DB2 Subsystems 115

Creating the Data Sharing Environment 116
Defining DB2 Coupling Facility Structures. 116
Internal Resource Lock Manager (IRLM) 116

Chapter 13. Planning the Log Streams 117
The MVS System Logger and the CICS Log Manager 117

Coupling Facility Requirements for the System Logger 118
Defining the logger environment for CICS. 118

Chapter 14. Planning the Resource Definitions 121
Defining Remote Attributes for Transaction Routing 121

Defining Transactions for Static Transaction Routing. 121
Defining Transactions for Dynamic Transaction Routing 123

Defining Connection and Session Definitions 125
Links from the Terminal-Owning Regions 125
Links from the Application-Owning Regions 129
Links from the File-Owning and Queue-Owning Regions 131

Cloning CICS Regions . 134
Cloning Regions of the Same Type 134
Defining Common System Initialization Parameters 134
Defining the Unique System Initialization Parameters 135
Examples of SYSIN Members for Cloning Application-Owning Regions 135

Chapter 15. Planning CICSplex Security 137
Defining Bind-Time and Link Security 137

Defining Bind-Time Security. 137
Defining Link Security . 137

Authenticating Users in Remote MRO Regions. 138
Authenticating Users Associated with MRO Requests 138
Authenticating Users Signing On Directly to Remote Regions 138

Guaranteeing Equal Access to Cloned Application-Owning Regions 139
Defining CICS Region Userids for Started Jobs 139

MRO Link Security Considerations 140
Bypassing Link Security Checking 141

vi z/OS V1R1.0 Parallel Sysplex Application Migration

Authorizing the Link Userid 141
Security in the Receiving Regions 141

Chapter 16. Planning for Workload Management 143
Using CICSPlex SM for Workload Balancing and Workload Separation 143

Workload Separation . 143
Workload Management . 143
Implementing Shortest-Queue Workload Balancing 144

Providing a Dynamic Transaction Routing Program 145
The MVS Workload Manager 146

Preparing to Migrate to Goal-Mode Workload Management 146

Chapter 17. Planning the CICS Startup Procedures 149
The CICS System Initialization Parameters 149

Using the Default System Initialization Table 149
Defining Common System Initialization Parameters for Cloned Regions 150
Using SYSIN for Common System Initialization Parameters 156
Using the PARM Parameter for Unique System Initialization Parameters 157

The CICS System Data Sets 158
Defining the CICS Startup Procedure for Started Jobs 158

Starting the CICS Regions 160

Part 3. Migrating IMS Applications . 163

Chapter 18. Planning for IMS TM in a Sysplex Environment 165
Cloning Your IMS Subsystems. 165

What to Share between IMS Subsystems in a Parallel Sysplex. 165
Ensure Unique IMSIDs . 166
Ensure Unique Terminal Names, LU Names, and User IDs 168
Divide Your Network . 169

Advantages of MSC . 169
Planning for MSC . 169
Workload Balancing Using MSC 170
Flow of Data within Multiple Systems 171

Convert Batch Jobs to BMP Programs 172
MVS Resource Management 173
Availability and Recovery. 174

Chapter 19. Planning for IMS/ESA Version 6 in a Parallel Sysplex
Environment . 175

Parallel Sysplex Migration Requirements 175
Migrating IMS . 175
Migrating Your Data-Sharing Environment 175

Planning for Migration to IMS Version 6 176
Planning for a Shared-Queues Environment. 176
Migrating to a Shared-Queues and Shared-EMH Environment 176
Benefits of Using Shared Queues 176
Required Components of a Shared-Queues Environment 177
Planning for the Common Queue Server (CQS) 178

Planning for Using VTAM Generic Resource Groups 178
Requirements for Using VTAM Generic Resource Groups 179
Restrictions on Using VTAM Generic Resource Groups 180

Planning for OSAM Database Cache Migration 180
Planning for Shared SDEPs Migration 180
Planning for Shared VSO DEDB Areas Migration 180

Contents vii

Part 4. Appendixes . 181

Appendix. Notices . 183
Trademarks. 184

Glossary . 187
Sources of Terms and Definitions. 187
Explanation of Cross-References 187

Index . 193

viii z/OS V1R1.0 Parallel Sysplex Application Migration

Figures

1. A Conceptual View of Data Sharing Subsystems in a Sysplex 18
2. Example of Connection Naming Between Terminal-Owning Region and Application-Owning

Region . 37
3. Example of generic connection naming. 38
4. Allocation of SEND/RECEIVE Prefixes for Down and Up Links 41
5. Sample MRO Configuration . 42
6. Allocation of SEND/RECEIVE Prefixes for Lateral Links 42
7. Unique CICS Data Sets Required for Each Region 44
8. Shared CICS Data Sets . 45
9. The CICS Transaction Routing Facility . 49

10. CICS Region Configurations Before and After Splitting into Separate Resource Manager Regions
for Terminals and Applications . 51

11. Alternative Initial Configuration Using Multiple Terminal-Owning Regions 52
12. The CICS Affinity Utility Components . 56
13. CICS Region Configurations Before and After Splitting into Separate Terminal-Owning and

Application-Owning Regions. 63
14. A Partial View of the CICSplex Configuration Showing some of the Application-Owning Regions 66
15. Plan Showing Which Applications the Regions Can Process 69
16. Conceptual View of Parallel Sysplex with an SMSVSAM Server in Each MVS Image 73
17. Migration Scenario Using a Mixture of Function Shipping and RLS 81
18. Conceptual View of Parallel Sysplex with a TS Server in Each MVS Image 84
19. Conceptual View of Parallel Sysplex with a CFDT Server in Each MVS Image 88
20. Conceptual View of Parallel Sysplex with a Named Counter Server in Each MVS Image 92
21. Function Shipping . 96
22. Function Shipping—Update . 97
23. SYNCPOINT Processing in an MRO Environment 99
24. Example of Inter-transaction Affinity Caused by Using Local Temporary Storage 101
25. Using Remote Queues to Avoid Inter-transaction Affinity Relating to Temporary Storage 103
26. Using Remote Queues to Avoid Inter-transaction Affinity Relating to Transient Data 105
27. Local DL/I Access Direct from an Application-Owning Region 110
28. DL/I Access Through Function Shipping to a File-Owning Region 110
29. CICS access to IMS databases through the IMS DBCTL interface 110
30. A Remote Transaction Resource Definition that Specifies Static Routing 123
31. A Remote Transaction Resource Definition that Specifies Dynamic Routing 125
32. Required Links to the Application-Owning Regions from the Terminal-Owning Regions 126
33. Resource Definitions for Links from Terminal-Owning Regions to Application-Owning Regions 127
34. Required Links, 6 in all, from Application-Owning Regions to the Terminal-Owning Regions and

Resource-Owning Regions. 129
35. Resource Definitions for Links from the Application-Owning Regions to Terminal-Owning Regions

and Resource-Owning Regions . 130
36. Required Links, 12 in All, from File-Owning and Queue-Owning Regions to All

Application-Owning Regions . 131
37. Resource Definitions for Links from File-Owning and Queue-Owning Regions 132
38. Example of Common System Initialization Parameters for a Terminal-Owning Region 151
39. Example of Common System Initialization Parameters for an Application-Owning Region 153
40. Example of Common System Initialization Parameters for a File-Owning Region 155
41. Example of Common System Initialization Parameters for a Queue-Owning Region 156
42. Defining the CICS System Initialization Parameters in the PARM Parameter 157
43. A Sample CICS Startup Procedure for All CICS Regions in a CICSplex 159
44. Procedure to Start 5 CICS Tasks, 1 for Each CICS Region 161
45. Multiple IMS Systems Transaction Flow . 172
46. Components of a Shared-Queues Environment 178

© Copyright IBM Corp. 1994, 2001 ix

x z/OS V1R1.0 Parallel Sysplex Application Migration

About This Publication

This revised edition of the publication is about migrating user applications from a
non-sysplex MVS environment to a sysplex that uses the coupling facility (a Parallel
Sysplex). It is aimed primarily at users of online transaction processing systems
such as CICS and IMS. It also discusses the implications for migrating IMS batch
applications.

The applications described in this book are predominantly online applications that
use CICS as the transaction manager, and a database manager such as IMS
(DBCTL), or DB2. It also covers the use by CICS transactions of VSAM-managed
files, and CICS temporary storage data, and how access to such data can be
optimized in a sysplex configuration. This book also describes application migration
for the IMS Transaction Manager.

In general, this book aims to emphasize what you can do to aid migration before
establishing a Parallel Sysplex environment, such as preparing to use CICS
dynamic transaction routing and migrating to IMS Database Control (DBCTL).

Sysplex and Product Availability (“Roll-Out”)

The sysplex is a large system computing environment that is evolving. Since
the introduction of the sysplex, the coupling facility technology was developed
to enhance sysplex capabilities. With a coupling facility in a sysplex, the
participating MVS systems can do high performance data sharing. A sysplex
with a coupling facility is called a Parallel Sysplex.

Note that this publication generally does not differentiate between a
sysplex without a coupling facility and a sysplex with a coupling facility.
When you see the term sysplex, understand it to mean a Parallel
Sysplex.

There might be changes to the implementation or availability of new products
or functions. For information about availability of hardware and software
sysplex support, consult your IBM marketing representative.

See “Notes on Product Availability” on page xii for additional information about
phased product availability.

Who Should Use This Publication
This book is for CICS or IMS system administrators who are responsible for
managing CICS (either in a single-region or multiregion environment) or IMS, and
who want to know about the benefits of a sysplex and how to plan for its
implementation. It is also for system and application programmers who need to
understand the effect of a sysplex on application development and design.

The book assumes that you are an existing CICS, IMS, or DB2 user:

v For CICS users, this book assumes you use CICS with the IMS/ESA Database
Manager (IMS DB) or DB2 and are familiar with CICS/ESA, DB2, and IMS DB
applications.

© Copyright IBM Corp. 1994, 2001 xi

v For IMS users, this book assumes you use IMS TM with IMS DB or DB2 and are
familiar with IMS and DB2 database and data communications applications.

How to Use This Publication
For the CICS information, this book is intended to be read sequentially, and in
conjunction with other books in related libraries (MVS, CICS/ESA, IMS, and so on).
When the other libraries contain more detailed information, there are references to
the relevant books.

For the IMS information, you should read relevant portions of “Part 1. Introduction”
on page 1 and all of “Part 3. Migrating IMS Applications” on page 163. This book is
intended to be read in conjunction with other books in related libraries (MVS,
CICS/ESA, IMS, and so on). When the other libraries contain more detailed
information, there are references to the relevant books.

See also “Related Publications in Other Libraries” on page xiii for details of books
from related libraries.

Notes on Terminology
Note the following regarding terminology in this publication:

v When you see the term sysplex, understand it to mean a Parallel Sysplex.

v When you see the term MVS in this book, understand it to mean the element of
either OS/390 or z/OS.

v The term system is one that is used heavily in many publications to mean many
different things. Often the reader must attempt to discern its exact meaning from
the context in which it is used. This publication uses the term system to mean
an MVS system. Here are some important definitions:

MVS system. An MVS image together with its associated hardware, which
collectively are often referred to simply as a system, or MVS system.
MVS image. A single occurrence of the MVS operating system that has the
ability to process work.

v In this publication, the licensed program DB2 for OS/390 is referred to as DB2.

v In this publication, the element of DFSMS of OS/390 or z/OS is referred to as
DFSMS.

v The Customer Information Control System is referred to as CICS, an element of
the CICS Transaction Server for OS/390 licensed program. CICS Transaction
Server also contains CICSPlex System Manager (CICSPlex SM), the CICS
Clients for workstation platforms, and other elements,

v The Information Management System Database Manager is referred to as IMS
DB, and IMS Transaction Manager is referred to as IMS TM.

Some terms and concepts that may be new to you are introduced in this book.
Where necessary, these are explained either in the text where they are first used,
or in footnotes. There is also a small glossary at the back of the book.

Notes on Product Availability
The term “follow-on phase” is used when discussing function planned to be
available in future phases of the roll-out of sysplex support across products. If
“follow-on phase” is not specified, assume that the function is available or
announced. Note that the information about follow-on phases represents IBM’s
intent, and is subject to change or withdrawal.

xii z/OS V1R1.0 Parallel Sysplex Application Migration

Where to Find More Information
This publication is part of a library of sysplex planning publications. IBM
recommends that you read these publications before you begin planning your
sysplex. Here is the complete list of publications in the sysplex planning library,
along with their order numbers:

Table 1. Sysplex Library Books

Publication Title Order Number Description

z/OS Parallel Sysplex Overview SA22-7661 Use this publication as an overview to
the sysplex and coupling facility data
sharing. It describes highlights and
the value of the sysplex to your
business.

z/OS Parallel Sysplex Application
Migration

SA22-7662 Use this publication to understand
planning considerations for the
parallel processing of online
applications that run on Customer
Information Control System
(CICS)/ESA and Information
Management System (IMS)/ESA
software in the sysplex.

For OS/390 or z/OS, see z/OS MVS Setting Up a Sysplex (SA22-7625) for
information about installing and managing MVS systems in a sysplex.

Related Publications in Other Libraries
A number of publications in other product libraries are referenced in this publication.

CICS
CICS Transaction Server for OS/390 Installation Guide, GC34-5697
CICS System Definition Guide, SC34-5725
CICS Application Programming Reference, SC34-5703
CICS Application Programming Guide, SC34-5702
CICS Resource Definition Guide, SC34-5722
CICS Shared Data Tables Guide, SC34-5723
CICS Transaction Server for OS/390 Migration Guide, GC34-5699
CICS Operations and Utilities Guide, SC34-5717
CICS Intercommunication Guide, SC34-5712
CICS Recovery and Restart Guide, SC34-5721
CICS Performance Guide, SC34-5718
CICS IMS Database Control Guide, SC34-5711
CICS RACF Security Guide, SC34-5720
CICS/ESA Dynamic Transaction Routing in a CICSplex, SC33-1012
CICS Customization Guide, SC34-5706

IMS
IMS/ESA Administration Guide: System
IMS/ESA Installation Volume 1: Installation and Verification
IMS/ESA Installation Volume 2: System Definition and Tailoring
IMS/ESA Operations Guide
IMS/ESA Utilities Reference: System , SC26-8770

DB2
DB2 Data Sharing: Planning and Administration
DB2 Installation Guide

About This Publication xiii

VTAM
VTAM Network Implementation Guide , SC31-6494
VTAM Operation , SC31-6495

OS/390 or z/OS
The OS/390 or z/OS product contains MVS, DFSMS, and VTAM as elements. The
titles and order numbers for the MVS, DFSMS, and VTAM elements referenced in
this publication are for z/OS and include the following:

z/OS DFSMSdfp Storage Administration Reference, SC26-7402
z/OS DFSMS Access Method Services, SC26-7394
z/OS MVS Planning: Workload Management, GC28-1761.
z/OS MVS Setting Up a Sysplex, GC28-1779
z/OS Communications Server: SNA Network Implementation Guide, SC31-6548
z/OS Communications Server: SNA Operation, SC31-6549

Processor Resource/Systems Manager (PR/SM)
PR/SM Planning Guide , GA22-7123
PR/SM Planning Guide (S/390 processors only), GA22-7236

For information about other products discussed in this publication, see the individual
product libraries.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:
lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

xiv z/OS V1R1.0 Parallel Sysplex Application Migration

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

About This Publication xv

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

xvi z/OS V1R1.0 Parallel Sysplex Application Migration

Part 1. Introduction

This provides a general introduction to the migration of CICS and IMS online
applications to a Sysplex environment.

© Copyright IBM Corp. 1994, 2001 1

Introduction

2 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 1. Sysplex Benefits for Online Transaction
Processing

This chapter explains why a sysplex provides an ideal environment for online
transaction processing. In particular, it discusses why the sysplex with data sharing
through use of the coupling facility is so well suited to a transaction processing
subsystem such as CICS or IMS/ESA Transaction Manager.

The transaction workload of a transaction processing system is typically composed
of a large number of independent, relatively simple, processing requests from a
large set of requestors (often a terminal network). Theoretically there is a high
degree of parallelism in the workload that can be executed on a highly parallel
architecture relatively easily.

Challenges to Running Transactions in Parallel: There are complicating factors
that make running transactions in parallel less straightforward, such as:

v The parallel systems need to look, from the outside, like one system.

v The transactions often are trying to update or access the same data.

v The pattern of reference to the data often varies radically over time.

v Today’s systems need to be available for work without interruption, even when
some components fail.

v The parallel systems should be able to execute existing programs without
modification.

How the Sysplex Meets the Challenge: The features of the sysplex, exploited by
IBM subsystems and products, are designed to produce a system that meets all of
these challenges. The sysplex enables parallel transaction processing, which
provides:
v High availability
v High capacity
v Workload balancing
v Application compatibility
v Ease of use
v The capability for nondisruptive growth as your needs grow.

Management of Data and Transactions: Online transaction processing involves
the management and sharing of data and the management of transactions that use
that data. In this overview chapter, you will read about the following:
v “Benefits of Data Sharing in a Sysplex”
v “Benefits of Running IMS in a Sysplex Environment” on page 6
v “Benefits of Running CICS in a Sysplex Environment” on page 7
v “General Considerations” on page 13

Benefits of Data Sharing in a Sysplex
The sysplex data sharing capabilities are exploited by a number of IBM products:

IMS DB
DL/I data sharing is available to both IMS and CICS online applications, and
also IMS batch applications.

DATABASE 2
DB2 data sharing is available to both IMS and CICS online applications, and
also DB2 batch and TSO/E applications.

© Copyright IBM Corp. 1994, 2001 3

DFSMS
VSAM record-level data sharing is available to CICS online applications.

CICS
Temporary storage data sharing, coupling facility data tables, and named
number counter sharing are available to CICS online applications.

IMS DB Multisystem Data Sharing
The sysplex coupling facility provides support for high performance multisystem
data sharing, which is exploited by the database management component of
IMS/ESA. This is used by CICS application-owning regions that need to access
databases managed by IMS Database Control (IMS DBCTL) and by IMS TM
dependent regions that need access to databases managed by IMS DB.

IMS data sharing ensures that all CICS-DL/I or IMS TM transactions have equal
access to the databases. You are no longer restricted by the number of MVS
images running IMS; therefore, the total processing capacity that can be applied to
access a given database is increased considerably. Note that IMS multisystem data
sharing is only available with IMS DB or DBCTL—it is not available for CICS
local-DL/I applications.

For more information migrating to a multisystem data sharing environment, see
“Chapter 11. Planning for IMS DBCTL Multisystem Data Sharing with CICS” on
page 109

DB2 Multisystem Data Sharing
DB2 Version 4 uses the sysplex to provide multisystem data sharing, which can
provide many benefits, including more processing capacity, higher availability, and
more ways to configure systems to meet the needs of various user groups. And
DB2 can take advantage of these benefits while continuing to serve as your
enterprise data server.

More information about DB2 data sharing is in DB2 for MVS/ESA Version 4 Data
Sharing: Planning and Administration. See “Chapter 12. Planning for DB2
Subsystem Access from CICS Regions” on page 115 for more information about
migrating CICS applications to a DB2 multisystem data sharing environment.

Increased Capacity: As more mission-critical transactions and queries use DB2, it
becomes increasingly important to extend the processing capacity of your system.
To avoid the cost of managing data copies, and to avoid having to rewrite
applications to access distributed data, you can add DB2s to a data sharing group,
and thereby have concurrent read-write access to the same set of data. There is a
single DB2 catalog and directory used by all members of the group, providing
applications with a single-system image. Because the existing SQL interfaces
remain unchanged, your investment in people and skills is protected.

You can continue to add DB2s to the group without affecting the work currently in
progress. Data is not “bound” to a particular DB2, so you can balance the workload
without having to repartition data.

Higher Availability: Having multiple DB2s capable of handling the transaction
workload provides an opportunity for greater availability, especially when you
perform maintenance, by allowing users on one system to be moved to another
system. If you use CICSPlex SM, unplanned outages can be less disruptive
because transactions can automatically be routed away from the failed system. DB2

4 z/OS V1R1.0 Parallel Sysplex Application Migration

can also takes advantage of MVS automatic restart management to get the DB2
subsystem up again as quickly as possible.

Configuration Flexibility: Each DB2 subsystem in the group can be configured to
meet the needs of different types of user groups. For example, you might configure
some DB2s for high-priority transaction processing and others for TSO/E or batch
users. And all users can still have access to the same set of data.

The DB2 Server: The DB2 data sharing group is a single large server capable of
handling many thousands of client connections. There are options for how these
clients can connect to the data sharing group and how to balance requests.
Applications do not require changes to begin accessing a data sharing group. See
“How DB2 Uses VTAM Generic Resources” on page 14 for more information.

VSAM Record Level Sharing
DFSMS 1.3 uses the sysplex to provide multisystem VSAM record-level sharing
(RLS), removing the need for CICS file-owning regions (FORs). DFSMS supports a
new data sharing subsystem (SMSVSAM) that provides CICS applications running
in multiple CICS regions equal access to VSAM data.

Data integrity is provided by global locking at the record level, not by control interval
as defined by the SHAREOPTIONS parameter (which is ignored for data sets
accessed in RLS mode).

High Availability: With VSAM record-level sharing, multiple CICS
application-owning regions (AORs) running in one or more MVS images within the
sysplex all have access to the same data. The sysplex supports more than one
SMSVSAM subsystem, ensuring that there is no single point of failure as in the
case of a CICS file-owning region. If there is loss of access through one subsystem,
the CICS dynamic transaction routing facility can route work to those AORs that
continue to have access to data through another SMSVSAM.

See “Chapter 6. Planning for VSAM Record-Level Sharing” on page 73 for more
information.

CICS Data Sharing Facilities
CICS provides three data sharing facilities for use by application progams:

v Temporary storage data sharing

v Coupling facilty data tables

v Named number counters.

Temporary Storage Data Sharing
CICS temporary storage (TS) data sharing provides multiregion access to
non-recoverable temporary storage queues. This facility allows CICS applications to
have equal access to non-recoverable TS queues from multiple CICS regions
running on any MVS image within the sysplex.

Enabling TS queues to be accessed by any CICS region within the sysplex:
v Improves workload management for CICS transactions
v Simplifies the migration of existing applications to the sysplex environment.

See “Chapter 7. Planning for Temporary Storage Data Sharing” on page 83 for more
information.

Chapter 1. Sysplex Benefits for Online Transaction Processing 5

Coupling Facility Data Tables
CICS coupling facility data tables provides multiregion access to file data sharing
without the need for a file-owning region. The data is held in tables, equivalent to
user-maintained data tables, in a coupling facility list structure. This facility allows
user application programs to have equal access to working data, with full update
capability, through the CICS file control API.

Enabling data tables to be stored in the coupling facility and accessed by any CICS
region within the sysplex:
v Improves workload management for CICS transactions
v Provides a sysplex-wide shared data tables support, with update integrity.

See “Chapter 8. Planning for Coupling Facility Data Tables” on page 87 for more
information.

Named Number Counters
This facility maintains a sequence of numbers as a named counter in the coupling
facility, and allows CICS applications and batch program to have access to a
named counter through a named counter server. The named counter APIs enable
multiple CICS regions running on any MVS image within the sysplex, and batch
programs, to obtain sequence numbers that are unique throughout the sysplex

See “Chapter 9. Planning for Named Number Counters” on page 91 for more
information.

Benefits of Running IMS in a Sysplex Environment
IMS has provided a database and transaction processing environment for more
than a quarter of a century. Over the years, IMS DB and IMS TM have been
extensively enhanced to meet the needs of customer business applications, which
have continued to grow and place increasing demands upon IMS services. To meet
these demands, and to satisfy customer needs, IMS is continually evolving to
exploit the capabilities of modern computer processors and communication
systems.

IMS/ESA Version 6 continues in this tradition. Some of the latest steps in the IMS
evolution are designed to exploit the Sysplex environment.

See “Part 3. Migrating IMS Applications” on page 163.

Running IMS TM in a Sysplex Environment
IMS TM has always run in a multiprocessor environment. It is perfectly suited to the
Sysplex environment because most customers will not have to make any changes
in the way they administer or operate IMS.

However, there are some things you should do to migrate your IMS TM systems
more easily from a non-Sysplex environment to a Sysplex environment. See
“Chapter 18. Planning for IMS TM in a Sysplex Environment” on page 165. With
IMS Version 6, you can share message queues across the Sysplex. Therefore, the
total processing capacity that can be applied to access a given transaction is
increased considerably. IMS TM ensures that all programs have equal access to
the shared message queues. See “Chapter 19. Planning for IMS/ESA Version 6 in a
Parallel Sysplex Environment” on page 175.

6 z/OS V1R1.0 Parallel Sysplex Application Migration

Running IMS DB in a Sysplex Environment
IMS DB uses the Sysplex coupling facility to support high-performance, multisystem
data sharing in the IMS DB/DC environment.

IMS DB has had data sharing for some time, but was limited to two MVS images.
Now, by using the coupling facility, IMS DB no longer has this limitation. Therefore,
the total processing capacity that can be applied to access a given database is
increased considerably. IMS DB ensures that all transactions have equal access to
the shared databases.

Application and Data Compatibility
There is no need to change the structure of your IMS applications, or application
programs, or data, to migrate to a data sharing Sysplex environment.

Benefits of Running CICS in a Sysplex Environment
CICS has been providing a transaction processing environment for more than a
quarter of a century. Throughout this period, IBM’s customers have been designing
and developing their own CICS online business applications. At the same time, a
huge industry has developed around CICS, with hundreds of independent software
vendors producing CICS applications packages, for a wide range of industries and
organizations.

Over the years, CICS has been extensively enhanced to meet the needs of these
business applications, which continue to grow and place increasing demands upon
CICS services. To meet these demands, and to satisfy customer needs, CICS has
been continually evolving to exploit the capabilities of modern computer processors
and communication systems.

CICS continues in this tradition—many of the latest steps in its evolution are
designed to exploit a sysplex environment.

A CICS Complex (CICSplex)
Although, originally, a full-function CICS ran in a single address space (region)
within the MVS environment, nowadays most CICS users are more accustomed to
running multiple, interconnected, CICS regions. Using the CICS multiregion
operation (MRO) intercommunication facility, users can combine CICS regions into
a complex of subsystems.

Using multiregion operation, you can separate CICS functions into individual
regions, the different types of CICS regions being classified as resource managers.
With the latest enhancements to MRO, these CICS resource manager regions can
reside in one or more MVS images (see “Cross-System MRO” on page 13 for
details).

A set of interconnected CICS regions acting as resource managers, and combining
to provide a set of coherent services for a customer’s business needs, is often
referred to as a CICSplex. In its simplest form, a CICSplex operates within a single
MVS image, and uses CICS multiregion operation facilities. Within a sysplex, a
CICSplex can be configured across all the MVS images in the sysplex (see Figure 1
on page 18 for an illustration of a CICSplex spread across an MVS sysplex.)

Chapter 1. Sysplex Benefits for Online Transaction Processing 7

The CICS Resource Manager Regions for Sysplex Operation
Most CICS customers are familiar with the CICS resource manager regions known
as terminal-owning regions (TORs), application-owning regions (AORs), and
file-owning regions (FORs). However, to migrate CICS applications to a sysplex
successfully, you may need to extend and change the use of this resource manager
principle even further in your installation.

For example, combined regions such as a terminal- and application-owning region,
or an application- and file-owning region, are not recommended in a sysplex, and
you should plan to split these functions into separate regions. Creating unique
terminal and application regions is discussed in “Chapter 4. Planning the
Terminal-Owning Regions” on page 49 and “Chapter 5. Planning the
Application-Owning Regions” on page 65.

You should also investigate how your applications use the CICS temporary storage
and transient data facilities. If, after investigation, it’s necessary, create
queue-owning regions for the management of CICS temporary storage and
transient data queues. The reasons are discussed in “Planning the Queue-Owning
Regions” on page 100.

In addition to the CICS-based resource managers, CICS also supports access to
other (non-CICS) data managers through its resource manager interface (RMI). The
two IBM-supplied resource managers that use the CICS RMI are DATABASE 2*
(DB2) and IMS Database Control (DBCTL) (DBCTL being the strategic interface to
IMS databases in preference to the CICS local DL/I interface). If your applications
require access to DB2 or IMS databases, you must plan how to access these
databases in a sysplex.

All the traditional benefits of splitting CICS into several resource manager regions
and linking them into an MRO-based CICSplex are valid in a sysplex. With the
introduction of the coupling facility data sharing sysplex, there are additional
benefits from operating an MRO CICSplex across multiple MVS images in the
sysplex.

Application and Data Compatibility
There is no requirement to change the structure of your applications, or the
application programs, or data, to migrate to a data sharing sysplex environment.

The MRO configurations discussed in this book assume that you can migrate your
CICS applications and their data, without change, to a sysplex environment.

You may want to change some of the names you use in the various system and
resource definitions, for the reasons discussed in “Chapter 3. Planning Naming
Conventions for CICS and Related Subsystems” on page 27, but such changes are
optional, not mandatory. Other similar recommendations are discussed in the
chapters that discuss the different types of CICS region.

Pre-sysplex Reasons for Splitting CICS into Resource Manager
Regions

There are several reasons for separating CICS functions into a number of resource
manager regions, and linking them into an MRO-based CICSplex. These are:
v Multiprocessor performance
v Workload separation
v Virtual storage constraint relief

8 z/OS V1R1.0 Parallel Sysplex Application Migration

v Availability
v Faster restart
v Managing resources between shifts.

Multiprocessor Performance
In general, CICS runs user application programs under a single task control block
(TCB). Running multiple application-owning regions, driven from one or more
terminal-owning regions, enables the multiprocessor capacity of n-way central
processor complexes (CPCs) to be more fully utilized than by channelling all CICS
work through one region. Also, creating a number of application-owning regions that
are all capable of running the same workload enables the terminal-owning regions
to perform workload management across the CICSplex.

Workload Separation
Assigning applications to separate application-owning regions might be desirable for
a number of reasons:

Departmental Separation
Some user departments might require their own CICS region for accounting
requirements, for security purposes, or other reasons.

Time-sharing
Applications that are heavy users of central processor resource
(processor-bound) should be run in a separate region, to avoid any impact
on the response times for other applications.

Virtual Storage Constraint Relief
Although nowadays most CICS code and control blocks reside above 16MB, a
CICS region is still limited by the amount of virtual storage available below 16MB
boundary for user transactions. It is possible to relieve the storage constraint by
splitting a CICS region into two or more separate regions, each of which has
access to shared resources as necessary.

Availability
Creating multiple application-owning regions can increase CICS availability by
reducing or minimizing the impact of a CICS failure. If one region fails, users whose
transactions are running in another region are unaffected. Availability is further
increased if more than one region is capable of running the same transactions. See
“Chapter 5. Planning the Application-Owning Regions” on page 65 for more
information about replicating (cloning) CICS regions.

Faster Restart
Restart after a CICS region failure is generally faster because there is less recovery
to do for a single-resource region than there is for a stand-alone CICS region. For
example, if an application-owning region fails, and the files and databases are
owned by other CICS regions, the resource owning regions perform any needed
recovery operations associated with transactions that are in-flight at the time of the
failure. They do this independently as soon as the failure occurs, without waiting for
the application-owning region to restart. This means the application-owning region
does not have to do any file or database back-out recovery operations (which would
otherwise have to be performed serially) during an emergency restart.

Furthermore, the application-owning region does not have to perform any terminal
control recovery operations for logged-on terminals, because this is a function of the
terminal-owning region. It also means that the only users affected by the failure are
those whose transactions were running in the application-owning region at the time
of the failure. Although these users experience the effects of their transactions
abending, they remain connected to CICS.

Chapter 1. Sysplex Benefits for Online Transaction Processing 9

Managing Resources Between Shifts
The division of operating hours into different shifts (prime shift, evening shift, and so
on) may also provide a reason for splitting CICS into separate regions. Although
some regions, including a terminal-owning region, may need to span many shifts,
some application-owning regions may be needed only for one shift (the prime shift,
say) after which they can be shut down and their released resources made
available for other tasks, such as an evening’s batch work.

Extra Benefits Provided by the Sysplex
Installing an MRO-CICSplex across an MVS sysplex, supported by CICS dynamic
transaction routing, can give you:

v Improved performance

v Improved availability

v Simplified systems management.

If you are unfamiliar with CICS dynamic transaction routing, see the CICS
Intercommunication Guide.

Improved Performance
Improvements in performance can be achieved in the form of increased throughput
and improved response times.

Increased throughput
An increase in throughput can be achieved by cloning application-owning
regions, and spreading the workload across the cloned application-owning
regions, which themselves can be spread across the sysplex.
Application-owning region clones are application-owning regions that are
identical in every respect except for identifiers such as SYSIDNTs and
APPLIDs, and therefore each application-owning region is capable of running
the same transaction workload. Using workload balancing techniques in the
dynamic transaction routing program to optimize the use of the available
application-owning regions, can give you:

v An increase in capacity for single applications, by exploiting multiple CPCs
within the sysplex

v An improvement in central processor (CP) utilization.

You cannot achieve the same improvements for a single application using static
transaction routing, because the application-owning region for any given set of
transaction ids is always fixed. Using dynamic transaction routing, however, you
can have multiple application-owning regions that are capable of processing the
transactions for an application, and you can balance the incoming workload
according to some load-balancing algorithm. For example, the dynamic
transaction routing program could use the “shortest-queue” technique to select
the application-owning region with the lowest number (shortest queue) of
current transactions.

Improved response times
An improvement in response times can be achieved by giving priority to some
transactions in preference to others, and sending high-priority tasks to the
application-owning region with the shortest queue. This form of workload
balancing can:

v Improve response times where response time is critical, possibly at the
expense of throughput

v Achieve more consistent response times

10 z/OS V1R1.0 Parallel Sysplex Application Migration

v Help you to manage the workload within the targets set by service level
agreements.

Improved Availability
Improved availability can be achieved in the form of both high availability and
continuous operations.

High availability
Dynamic transaction routing can help you to provide high availability by
enabling you to clone application-owning regions (and terminal-owning regions).
Initializing clones of application-owning regions in different MVS images allows
the terminal-owning region to route transactions to another application-owning
region in the event of either a CICS or an MVS failure.

Also, with multiple application-owning regions available, a dynamic transaction
routing program in any terminal-owning region can bypass an
application-owning region that is giving poor response times, or that may have a
problem.

Faster restart is possible for an application-owning region when the workload is
spread across a greater number of regions, minimizing the impact of any single
failure. All these factors contribute to:

v Reducing the number users affected by any single failure

v Reducing the length of outages seen by an end user

v Reducing the incidence of queueing between CICS regions, caused by too
high a demand for the available number of sessions.

Continuous operations
Dynamic transaction routing helps you to achieve continuous availability by
allowing you to:

v Quiesce an application-owning region and direct transactions to an alternate
application-owning region

v Remove an application-owning region when it has been quiesced

v Stop and restart an application-owning region to apply service changes to the
application-owning region when no transactions are active

v Add an application-owning region clone and notify the dynamic transaction
routing program that a new target application-owning region is available.

The capability thus provided by dynamic transaction routing enables you to add
and remove application-owning regions, and apply changes to
application-owning regions, in a way that is transparent to end users. The kind
of changes you might want to make to an application-owning region, while still
maintaining service to end users, could be to introduce modified CICS tables, or
to apply service to CICS code.

The CICS Customization Guide gives all the programming interface information you
need to write a dynamic transaction routing program, together with some processing
considerations. Alternatively, you can use the dynamic transaction routing program
provided as part of the workload management component of CICSPlex System
Manager/ESA.

Simplified Systems Management
Dynamic transaction routing simplifies systems management by helping you to
manage departmental workloads, and facilitates the support of different versions of
CICS and cut-over from test to production.

Chapter 1. Sysplex Benefits for Online Transaction Processing 11

Managing departmental workloads
Dynamic transaction routing enables you to separate workloads easily for
financial (departmental accounting), security, or company policy reasons.

You can achieve separate workloads by:

v Cloning application-owning regions

v Performing workload separation in a dynamic transaction routing program,
routing transactions to subsets of the cloned application-owning regions
based on:

– Transaction identifier (TRANSID), which allows workload separation by
application

– User identifier (USERID), which allows workload separation by user (even
though different groups of users may be using the same application)

– LU (or terminal) name (NETNAME or TERMID), which allows workload
separation by geographical location (for example, different branch offices).

Separate workloads managed in these ways still allow you to retain the benefits
of cloned application-owning regions, with equivalent regions providing
simplified systems management.

Supporting different versions and cut-over to production
Dynamic transaction routing enables you to offer different versions of an
application to different users. It also allows you to cut over to a new version of
an application while retaining the ability to back off the new version in the event
of problems arising. These benefits of simplified systems management are
achieved by:

v Cloning application-owning regions

v Performing workload separation in a dynamic transaction routing program,
routing transactions to subsets of the cloned application-owning regions
based on criteria such as user identifier and LU name.

Increasing the number of CICS regions by cloning terminal-owning and
application-owning regions might be seen as causing an increase in the number of
actions required to perform a given task against a CICS resource. For example, if
you need to disable a transaction or discard a resource definition, you must do this
in all the clones in which these resources reside. However, by using the single
system image capabilities of CICSPlex SM you can avoid any increase in the
number of actions, and probably reduce them. See “CICSPlex System
Manager/ESA”.

CICSPlex System Manager/ESA
CICSPlex System Manager/ESA (CICSPlex SM) is a system management tool that
enables you to manage the multiple CICS regions in a CICSplex as a single-system
image.

The provision of a single-system image enables you to operate at the logical rather
than the physical level, without regard to either the scale or location of CICS
resources. That is, you can operate the CICSPlex though it is a single CICS region.
CICSPlex SM provides a general-purpose interface to a variety of CICS system
management functions that allow operators to manage multiple CICS regions, within
a sysplex, from a single point of control.

The main functions provided by CICSPlex SM are:

v Operating functions through a general-purpose operator interface

12 z/OS V1R1.0 Parallel Sysplex Application Migration

v Online access to CICS monitoring and statistics information across the CICSplex.

v Workload management functions that support both workload balancing and
workload separation

v Real-time analysis functions that support external notification of unusual or
otherwise interesting conditions.

The role of CICSPlex SM in workload management, and how it interacts with MVS
workload management, is covered in “Chapter 16. Planning for Workload
Management” on page 143.

Cross-System MRO
MRO provides communication between two or more CICS regions using CICS
internal facilities and protocols. CICS supports MRO links between CICS regions
that reside in the same MVS image, or in different MVS images.

The MRO access methods you can specify for all MRO links are IRC, which uses
the CICS interregion program, and XM, which uses MVS cross-memory services.

CICS uses MVS sysplex services to support MRO links between regions that reside
in different MVS images. This MRO access method, called XCF/MRO, enables you
to configure your CICSplexes across multiple MVS images without incurring the
performance penalty inherent in CICS intersystem communication (ISC). CICS uses
XCF/MRO automatically when it detects that its MRO partners are in different MVS
images.

General Considerations
Other IBM products that use the coupling facility to provide benefits for applications
using the sysplex are:
v VTAM
v RACF or the SureWay Security Server element of OS/390 or z/OS

VTAM Support for the Sysplex
VTAM provides two functions that are of particular benefit to subsystems operating
in a sysplex environment:
1. Generic resources
2. Persistent LU-LU sessions.

The distributed data facility of DB2 Version 4 and IMS Version 6 can make use of
generic resources, and CICS support both of these VTAM functions. For CICS, you
can use both functions together in the same CICS terminal-owning region. However,
you could decide to use VTAM generic resources without persistent sessions. You
should consider the benefits of each facility, how they interact, and the effect on
your terminal users. See “Implementing VTAM Persistent LU-LU Sessions” on
page 62.

VTAM Generic Resources
The VTAM generic resources function enables several VTAM applications to be
known by a single name—the generic resource name. At session start, the generic
resource name is used in the logon request. Using the generic resource name,
VTAM selects one of the real VTAM application names, registered as members of
the generic resource group, to be the target of the session.

Chapter 1. Sysplex Benefits for Online Transaction Processing 13

For the generic resources function to operate, each VTAM application must register
itself to VTAM under its generic resource name. Registration is performed
automatically by CICS when it is ready to receive VTAM logon requests.

CICS uses the VTAM generic resource name for authenticating user signon in all
the terminal-owning regions, removing the need to define and maintain separate
APPL resource class profiles for each terminal-owning region.

Note: The generic resources function is provided by a sysplex using advanced
peer-to-peer networking (APPN). At least one VTAM in the sysplex must be
an APPN network node, with the other VTAMs being APPN end nodes. Each
VTAM must be connected to the coupling facility and be part of the same
sysplex.

See “Chapter 4. Planning the Terminal-Owning Regions” on page 49 for more
information about CICS support for VTAM generic resources, and see “Planning for
Using VTAM Generic Resource Groups” on page 178 about IMS support for VTAM
generic resources.

How DB2 Uses VTAM Generic Resources
If you have OS/390, z/OS, or VTAM Version 4 Release 2 or later on the server, you
can use VTAM’s support for generic resources and have a generic 8-character
name to represent a group of VTAM LU names. For example, generic name
LUGROUP might represent three DB2 subsystems in the group whose real LU
names are LUDB2A, LUDB2B, and LUDB2C.

Clients can make a simple change to their communications directories to refer to
the DB2 data sharing group by the generic name. VTAM selects the real DB2 LU
name to be used by the requester. VTAM makes this choice based on the number
of active DDF sessions or the result of a user-written VTAM or MVS workload
manager exit routine.

After a requester is associated with a particular LU in the data sharing group, all
future requests from that requester are sent to the same member of the data
sharing group until all connections between the two LUs are terminated.

For more information about using generic resources with DB2, see DB2 for
MVS/ESA Version 4 Data Sharing: Planning and Administration.

VTAM Persistent LU-LU Sessions
Persistent session support improves the availability of CICS. It exploits VTAM
persistent LU–LU session support to provide restart-in-place of a failed CICS
without the need for network flows to re-bind CICS terminal sessions.

CICS support of VTAM persistent LU-LU sessions retains LU–LU sessions for all
VTAM supported sessions (except LU0 pipeline and LU6.1 sessions). After the
failure of a CICS terminal-owning region, VTAM can determine from information
passed by CICS the period of time over which the sessions should be retained. If a
failed CICS is restarted within this time, it can use the retained sessions
immediately without needing network flows to re-bind them.

See the CICS Intercommunication Guide for more information about running CICS
with VTAM’s persistent session support.

14 z/OS V1R1.0 Parallel Sysplex Application Migration

Security
You can run CICS or IMS/ESA with RACF 1.9.2 as the external security manager.
However, to obtain maximum value from the sysplex environment, you should
consider the benefits of migrating to RACF 2.1, OS/390, or z/OS.

RACF 2.1 or the SureWay Security Server element of OS/390 or z/OS exploits the
sysplex and provides the following benefits for IMS TM Version 5 and CICS/ESA
4.1 regions running in a sysplex:

v Faster retrieval of security profiles.

RACF 2.1 or the Security Server uses the MVS virtual lookaside facility (VLF) to
cache control blocks associated with signed-on users, which gives a significant
performance improvement in the reuse of the cached information.

v For CICS, there is no need to use the CEMT or EXEC CICS PERFORM
SECURITY REBUILD command when adding new or changed security profiles to
a running CICS region.

General resource class profiles are now held in storage common to all address
spaces, which are refreshed by the RACF security administrator.

v Enhanced security for started tasks with JOB support (provided as a PTF for
APAR OW02190).

This allows you to run CICS or IMS regions as started tasks using the same
procedure, but with each region running under the authority of its own userid.
RACF or the Security Server provides the STARTED general resource class with
the STDATA segment to support started jobs.

Naming Conventions
In the sysplex environment, where you are likely to have large numbers of
subsystems installed, meaningful naming conventions are very important. The more
subsystems you have to deal with, the more important it is to have good naming
conventions.

Naming conventions are particularly important where you have multiple instances of
a subsystem, such as CICS and IMS, many of which are connected through
communication links. Even when subsystems are not directly connected, use a
common naming convention for all subsystems that coexist within a sysplex.
Wherever possible, design your conventions with as wide a scope as possible (for
example, global scope within an entire corporate network).

See “Part 2. Migrating CICS Applications” on page 25 for the naming conventions
used in the CICS examples used in this book.

Chapter 1. Sysplex Benefits for Online Transaction Processing 15

16 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 2. Planning the Subsystem Configuration for a
Sysplex

In the previous chapter, we gave some reasons why a sysplex environment
provides an ideal environment for online applications. This chapter describes the
kind of target configuration to which you should be planning to migrate, so that your
transaction processing subsystems can fully exploit a sysplex environment.

The target configuration is designed to support the following types of workload, all
of which can fully exploit the data sharing capability of the sysplex:

v CICS-DL/I applications

These are applications where the principal database is managed by DBCTL—it
doesn’t mean they don’t also use other forms of data. The applications may also
use a DB2 database, and VSAM data that is accessed either through an
SMSVSAM server or through a CICS file-owning region.

v CICS-DB2 applications

These are applications where the principal database is managed by DB2—it
doesn’t mean they don’t use also other forms of data. The applications may also
use a DBCTL database, and VSAM data that is accessed either through an
SMSVSAM server or through a CICS file-owning region.

v CICS-VSAM applications

These are applications where the main application data is in one or more VSAM
data sets–it doesn’t mean they don’t use also other forms of data. The
applications may also use a DBCTL database and DB2 database.

v IMS TM applications with either IMS DB or DB2 as the database manager.

The CICSplex shown in the target configuration is designed to support CICS-VSAM
applications that access VSAM data through an SMSVSAM server. It is also
possible to use a CICS file-owning region in this configuration where this is
considered more appropriate.

Most CICS transactions use the CICS temporary storage facility. The sysplex
configuration illustrated in Figure 1 on page 18 includes CICS temporary storage
servers for use with non-recoverable TS queues. Where these are not appropriate,
perhaps because your TS queues are defined as recoverable, you can add
queue-owning regions (QORs). These provide an alternative method of shared
access to the queues, to avoid potential intertransaction affinity problems. (For an
explanation of CICS intertransaction affinities, see the CICS Application
Programming Guide.)

Prerequisite Hardware and Software
To implement the data sharing configuration illustrated in Figure 1 on page 18 to
support IMS, DB2, and VSAM RLS data sharing, you need the prerequisite
hardware and software.

For information about DB2 data sharing, see the DATABASE 2 Version 4
publication, DB2 for MVS/ESA Version 4 Data Sharing: Planning and Administration.

© Copyright IBM Corp. 1994, 2001 17

Notes to Figure 1:

1. This configuration consists of a sysplex based on a S/390 9672 Parallel
Transaction Server with 6 CPCs, each CPC running one MVS image, plus 2
CPCs used as coupling facilities. All the CPCs running under MVS have
high-speed links to both coupling facilities.

IMSA IMSBDCD1

CPCA CPCDCPCC CPCFCPCB CPCE

MVSEMVSA

IMS TM A

SYSPLEX

Coupling
facility 1

Coupling
facility 2

IMS TM BCMAS

DTD1
TOR4 DLISAS

DBRC DBRC

DLISAS

DAD1
AOR

DAD2 RLMA RLMB
AOR IRLM IRLM

DAD3
AOR

DLD1
IRLM MPP1 MPP1

MPP2

MPPn

BMP BMP

IFP1

IFP2

IFP1

IFP2

MPP2

MPPn

DID1
IRLM

DDD1
DBCTL

BMP

DBRC

DLISAS

DADn
AOR

(D)
SMSVSAM

SERVER
TS

DBD1 IBE1 IBF1
DB2(MSTR) DB2(MSTR) DB2(MSTR)

DSNDBM1 DSNDBM1 DSNDBM1

MVSFMVSB MVSC MVSD

VTAMVTAM VTAM

DCA1 DCC1DCB1
CMAS CMASCMAS

DTA1 DTB1
TOR1 TOR2

DAA1 DAB1
AOR AOR

DAA2 DAB2
AOR AOR

DAA3 DAB3
AOR AOR

DLA1 DLB1
IRLM IRLM

DIA1 DIB1
IRLM IRLM

DDA1 DDB1
DBCTL DBCTL

DBRC

BMP BMP

DBRC

DLISAS DLISAS

DAAn DABn
AOR AOR

(A) (B)
SMSVSAM SMSVSAM

SERVER SERVER
TS TS

DBA1 DBB1
DB2(MSTR) DB2(MSTR)

DSNDBM1 DSNDBM1

DTC1
TOR3

DAC1
AOR

DAC2
AOR

DAC3
AOR

DLC1
IRLM

DIC1
IRLM

DDC1
DBCTL

BMP

DBRC

DLISAS

DACn
AOR

(C)
SMSVSAM

SERVER
TS

DBC1
DB2(MSTR)

DSNDBM1

VTAMVTAM VTAM

Figure 1. A Conceptual View of Data Sharing Subsystems in a Sysplex

18 z/OS V1R1.0 Parallel Sysplex Application Migration

2. There are 4 CICS terminal-owning regions assigned to the first four MVS
images. To ensure maximum flexibility, all terminals in the network should have
access to all application-owning regions (AORs), regardless of the
terminal-owning region to which they log on. This means defining MRO
connections between each TOR and every application-owning region. The links
between TORs and AORs that reside in different images are XCF/MRO links.

3. The named AORs are labeled using the naming convention described in
“Chapter 3. Planning Naming Conventions for CICS and Related Subsystems”
on page 27 (DAA1–DAA3, DAB1–DAB3, DAC1–DAC3, and DAD1–DAD3, with
additional AORS, as required, shown as DAAn through DADn).

4. All the application-owning regions have equal access to DBCTL, DB2, and
VSAM data through connections with the DBCTL, DB2, SMSVSAM, and TS
server subsystems that reside in the same MVS image.

5. All the CICS regions, regardless of type or special purpose, are considered to
form one CICSplex.

The Target Configuration
The remainder of this chapter describes a target data sharing configuration that is
recommended for a Parallel Sysplex. The main subsystem components of this
target configuration are described in “The Target Subsystems”.

The target configuration is designed with the following main objectives:

Availability
To provide maximum availability of online applications by cloning as many of the
sysplex components as possible. Currently, these include:
v The MVS images
v The VTAM nodes
v The transaction processing subsystems—CICS and IMS TM
v The DBCTL and DB2 subsystems, providing DL/I and DB2 multisystem data

sharing.

Capacity
To provide a growth capability that lets you add additional capacity without
disrupting production work. The parallel transaction server-based sysplex
provides this kind of non-disruptive growth capability, whereby you can add a
new CPC or extra frames.

System management
To provide better system management of multiple MVS images, with MVS
clones making for easier installation and administration of additional MVS
images.

The configuration shown in Figure 1 on page 18 is not symmetrical; that is, the MVS
images and their subsystems are not exact clones. In the case of the CICS and
IMS online subsystems, these are segregated as shown for illustrative purposes
only. In a sysplex, you should aim for as much symmetry as possible, especially in
a sysplex that is based entirely on a parallel transaction server. For example, there
are no capacity reasons why you should not install a CICS terminal-owning region
on every MVS image in the sysplex.

The Target Subsystems
The target configuration shown in Figure 1 on page 18 comprises the following
elements:

Chapter 2. Planning the Subsystem Configuration for a Sysplex 19

v One terminal-owning region in each of the MVS images MVSA through MVSD
(TOR1 through TOR4)

v A minimum of 12 application-owning regions allocated across the 4 MVS
images, MVSA—MVSD.

Although the transaction processing workload that runs on our Parallel Sysplex
configuration is assumed to be a mixture of DBCTL-, DB2-, and VSAM-based
applications, all the application-owning regions are capable of running all
transactions. That is, they are clones of one another, and any workload
separation is controlled by workload management policies and the CICS dynamic
routing mechanism. For this reason, all the application-owning regions require a
connection to all the data sharing subsystems (DBCTL, DB2, and SMSVSAM) in
their respective MVS images. Note that only DBCTL and DB2 need connections
to be defined and started. CICS registers automatically with SMSVSAM if the
subsystem is present and RLS=YES is specified as a system initialization
parameter. CICS also connects automatically to a temporary storage server as
required.

v There are 4 DBCTL environments, allocated across 4 MVS images
(MVSA—MVSD) to support the CICS-DL/I workload processed by the
application-owning regions. Each DBCTL consists of a database control (DBCTL)
address space, a database recovery control (DBRC) address space, and a DL/I
separate address space (DLISAS).

v There are 4 DB2 subsystems, allocated across 4 MVS images (MVSA—MVSD)
to support the CICS-DB2 workload processed by the application-owning regions.

v There are 4 SMSVSAM subsystems, allocated across 4 MVS images
(MVSA—MVSD) to support the CICS-VSAM workload processed by the
application-owning regions.

v There are 4 temporary storage subsystems, allocated across 4 MVS images
(MVSA—MVSD) to support access to remote temporary storage queues that
reside in shared TS pools.

v There are 8 IMS internal resource lock managers (IRLMs), one for each DBCTL
and one for each DB2. (SMSVSAM takes care of its own lock management and
does not use a separate address space.)

The CICS Terminal-Owning Regions
With the VTAM generic resources function, all the terminal-owning regions in the
CICSplex can be represented by one generic APPL name, and appear as one to
terminal users. This means that, regardless of which application the users want,
they logon to only a single CICS APPLID. VTAM generic resources resolves the
generic name to the specific APPLID of one of the terminal-owning regions. Thus
the CICSplex appears as a single system to the end user.

These terminal-owning regions are identical in every respect except in their external
identifiers. This means that:

v They have different specific APPLIDs to identify them to VTAM and their partner
MRO regions

v They each have a unique local name specified on the SYSIDNT system
initialization parameter

v They each have a unique CICS monitoring subsystem identifier for RMF
performance reporting, specified on the MNSUBSYS system initialization
parameter.

20 z/OS V1R1.0 Parallel Sysplex Application Migration

Generally, apart from the identifiers listed above, you should try and make your
terminal-owning regions identical clones, defined with identical resources—the same
system initialization parameters, the same group-list of CSD definitions, and so on.

Exact cloning may not be possible if you have some resources that can be defined
to only one region. For example, if your network needs to support predefined
auto-connected CICS terminals, you have to decide which region such resources
should be allocated to, and specify them accordingly. In this situation you cannot
use exactly the same GRPLIST system initialization parameter to initialize all your
terminal-owning regions. However, the GRPLIST system initialization parameter
allows you to specify up to four group list names, which can include a generic
symbol, making it easier to handle variations in CICS startup group lists.

The reasons for having multiple terminal-owning regions are as follows:

For continuous availability
You need to ensure that you have enough terminal-owning regions to provide
continuous availability of the CICSplex.

Fewer users are impacted by the failure of one terminal-owning region. If a
terminal-owning region fails, the users connected to other terminal-owning
regions are unaffected, while the users of the failed region can re-logon
immediately, using the VTAM generic resource name, without waiting for the
failed terminal-owning region to restart.

For performance
To service a number of application-owning regions requires many MRO send
and receive sessions. It is better to allocate the required sessions across a
number of terminal-owning regions than try to load them all on to just one or
two.

In the target configuration, we have tried to balance the number of subsystems
and CICS regions to fully exploit MVS images running on multiprocessor CPCs.
For example, if the CICSplex is running on a parallel transaction server that
comprises 6-way CPCs, one terminal-owning region supporting 3 or 4
application-owning regions should be able to fully exploit the capacity of each
CPC. The total number of CICS regions will depend on the average path length
and number of DBCTL, DB2, or VSAM database accesses per transaction. For
more information, see “Chapter 5. Planning the Application-Owning Regions” on
page 65.

For faster restart
In the event of a terminal-owning region failure, not only are fewer terminal
users affected when their sessions are allocated across multiple
terminal-owning regions, but restarting the failed terminal-owning region is faster
because of the smaller number of sessions to be recovered.

For more information about creating the terminal-owning regions, see “Chapter 4.
Planning the Terminal-Owning Regions” on page 49.

The CICS Application-Owning Regions
The application-owning regions are defined as sets, with each set comprising
identical regions (AOR clones). Each set of clones should be capable of handling
one or more different applications. Workload balancing and availability is achieved
by the terminal-owning regions dynamically routing the incoming transactions to the
best candidate application-owning region within a cloned set.

Chapter 2. Planning the Subsystem Configuration for a Sysplex 21

If you have split your CICS regions into separate regions based on application, the
data sharing, workload balancing environment of the sysplex enables you to
collapse regions together again. If your reason for splitting applications into
separate regions is to provide some form of storage protection between
applications, transaction isolation makes this no longer necessary.

For more information about creating the application-owning regions see “Chapter 5.
Planning the Application-Owning Regions” on page 65.

The CICS File-Owning Regions
There is no file-owning region (FOR) shown in our configuration, which assumes
that VSAM data sets are accessed in RLS mode to achieve sysplex-wide data
sharing.

You might need a file-owning region, however, to provide shared access to those
data sets for which RLS is not suitable or not supported (for example, as in the
case of BDAM data sets). If files are defined as remote files owned by an FOR, the
AORs function-ship remote file requests to the FOR. This method of data sharing
by function-shipping does not offer the same high level of availability as RLS,
because a data set can be accessed through one FOR only, which becomes a
single point of failure.

See “Planning the File-Owning Regions” on page 95 for information about creating a
file-owning region.

The CICS Queue-Owning Regions
Our CICSplex configuration shown in Figure 1 on page 18 does not include a
queue-owning region (QOR). The configuration assumes that CICS temporary
storage queues that need to be shared to avoid intertransaction affinities are held in
TS pools and accessed through a CICS TS server.

If you have any recoverable TS queues (which are not supported by CICS
temporary storage data sharing servers), that must be accessible through all the
AORs, the solution is to include a queue-owning region in the CICSplex. Defining
queues to the application-owning regions as “remote” queues, accessed through a
queue-owning region, ensures that they are accessible by any application-owning
region via function-shipping requests.

See “Planning the Queue-Owning Regions” on page 100 for more information about
including a queue-owning region in your CICSplex.

The IMS DBCTL Environment
To exploit IMS data sharing, our target configuration includes one IMS DBCTL
environment in each MVS (MVSA—MVSD) that has CICS application-owning
regions, with each application-owning region connected to the DBCTL in its MVS
image.

Throughout this book, we assume that all the DBCTL subsystems are installed in
MVS images running on a parallel transaction server.

See “Chapter 11. Planning for IMS DBCTL Multisystem Data Sharing with CICS” on
page 109 for more information about DBCTL and data sharing in a sysplex
environment.

22 z/OS V1R1.0 Parallel Sysplex Application Migration

The DB2 Subsystems
To exploit DB2 data sharing, our target configuration includes one DB2 subsystem
in each MVS that has CICS application-owning regions (MVSA—MVSD), with each
application-owning region connected to the DB2 in its MVS image.

See “Chapter 12. Planning for DB2 Subsystem Access from CICS Regions” on
page 115 for more information about handling DB2-related applications in a sysplex
environment.

The IMS Online Environment
Our configuration could also show an IMS online environment in one or more of the
MVS images. These IMS subsystems can benefit from the data sharing capability of
the sysplex and from the VTAM generic resources function (new in IMS/ESA
Version 6).

Transactions that access IMS data entry databases (DEDBs) with sequential
dependent segments or the virtual storage option (VSO) can run in only one IMS
subsystem, that is, cannot participate in data sharing.

See “Chapter 18. Planning for IMS TM in a Sysplex Environment” on page 165 and
“Chapter 19. Planning for IMS/ESA Version 6 in a Parallel Sysplex Environment” on
page 175 for more information about IMS online systems in a Sysplex environment.

The CICSPlex SM Address Space
Our configuration shows a CICSPlex SM address space (CMAS) in each MVS
image that runs CICS regions (MVSA—MVSD). Together they provide a
single-system image of the CICSplex shown in Figure 1 on page 18.

A CMAS is the hub of any CICSPlex SM configuration, being responsible for the
work involved in managing and reporting on CICS regions and their resources. A
CICSplex can be managed by one or more CMAS—in our case we have installed
one CMAS in each relevant MVS image.

The CMAS implements the monitoring, real-time analysis, workload management,
and operational functions of CICSPlex SM, and maintains configuration information
about the CICS regions for which it is responsible.

Chapter 2. Planning the Subsystem Configuration for a Sysplex 23

24 z/OS V1R1.0 Parallel Sysplex Application Migration

Part 2. Migrating CICS Applications

This deals with migration for CICS applications. It discusses the following topics:

v “Chapter 3. Planning Naming Conventions for CICS and Related Subsystems” on
page 27

v “Chapter 4. Planning the Terminal-Owning Regions” on page 49

v “Chapter 5. Planning the Application-Owning Regions” on page 65

v “Chapter 6. Planning for VSAM Record-Level Sharing” on page 73

v “Chapter 7. Planning for Temporary Storage Data Sharing” on page 83

v “Chapter 8. Planning for Coupling Facility Data Tables” on page 87

v “Chapter 9. Planning for Named Number Counters” on page 91

v “Chapter 10. Planning Resource-Owning Regions” on page 95

v “Chapter 11. Planning for IMS DBCTL Multisystem Data Sharing with CICS” on
page 109

v “Chapter 12. Planning for DB2 Subsystem Access from CICS Regions” on
page 115

v “Chapter 13. Planning the Log Streams” on page 117

v “Chapter 14. Planning the Resource Definitions” on page 121

v “Chapter 15. Planning CICSplex Security” on page 137

v “Chapter 16. Planning for Workload Management” on page 143

v “Chapter 17. Planning the CICS Startup Procedures” on page 149

© Copyright IBM Corp. 1994, 2001 25

Migrating CICS Applications

26 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 3. Planning Naming Conventions for CICS and
Related Subsystems

The naming conventions described in this chapter are designed to support the
following subsystems:
v CICS
v DB2
v IMS DB
v IRLM
v CICSPlex SM

When you define a relationship between the subsystem components in an MVS
image, use the same naming convention for all of them.

What to Consider When Planning Naming Conventions
To plan your naming conventions, you need to consider the following points.

CICS
The naming convention described in this chapter is of particular benefit for those
environments with large numbers of CICS regions using CICS multiregion operation
(MRO).

Although such conventions may offer less immediate benefit for installations with a
small number of CICS regions, standard, structured naming conventions are
nevertheless encouraged for use in any installation using CICS and associated
database subsystems.

They are considered essential for a CICSplex in a sysplex environment.

Most CICS users are operating multiple CICS regions within an MRO CICSplex,
and the naming conventions used must therefore be suitable for CICSplex
operations. They should also allow for more than one CICSplex in each sysplex.

IMS DB
In the Parallel Sysplex, IMS DBCTL, an environment of IMS DB, provides DL/I data
sharing support for CICS.

A CICS region connects to a specific DBCTL: if CICS were to fail, that CICS region
must always be reconnected to the same specific DBCTL when it is restarted. This
is because any logical units-of-work that are in doubt at the time of the failure can
be resolved only by reconnecting the restarted CICS region to the same specific
DBCTL region. (See “Data Integrity Considerations” on page 99 for information
about situations when data integrity may be in doubt.)

The naming convention should therefore support the relationship of specific CICS
regions with a particular IMS DBCTL and should support multiple IMS DBCTLs.

DB2
For DB2 data sharing, consider the relationship between DB2 and its associated
subsystems, such as IMS, CICS, and IRLM. In addition, all data objects (such as
tables, table spaces and indexes) in a data sharing group must have unique names.

© Copyright IBM Corp. 1994, 2001 27

Ideally, your chosen naming convention should reflect the relationship between DB2
and its connected subsystems.

IRLM
In a Parallel Sysplex environment, the database managers use the lock services of
IRLM to ensure data integrity.

Each type of database manager within an MVS image requires its own IRLM, and
the naming convention should show the relationship between the database
managers and the IRLMs that support them. IMS and DB2 cannot share the same
IRLM. In our target configuration shown in Figure 1 on page 18, the DB2 and
DBCTL subsystems running in MVSA—MVSD each have their own IRLM.

Each IMS data sharing group needs at least one IRLM per MVS. If you have more
than one DBCTL in the same MVS image, they can share the same IRLM, which is
the recommended option.

CICSPlex SM
The CICSPlex SM address space (CMAS) is the hub of any CICSPlex SM
configuration, and is responsible for most of the work involved in managing and
reporting on its associated CICS regions and their resources. A CICSplex managed
by CICSPlex SM has at least one CMAS, and in our target configuration (shown in
Figure 1 on page 18) we have installed one CMAS in each MVS image to manage
the CICS regions in that MVS. These CMASs have the same recovery
considerations as other subsystems, such as DBCTL and DB2, that are connected
to CICS regions. As in the case of the database managers, your chosen naming
convention should reflect the relationship between the CMASs and their CICS
regions.

Other Considerations
v Cloning
v CICS connectivity
v Workload management
v Recovery
v Full use of the character set
v Four-character naming restriction.

Cloning
The naming convention you choose must support the replicating (or cloning) of
MVS images and the subsystems, such as CICS and IMS, that run in them.

Cloning CICS terminal-owning regions and application-owning regions is a way of
achieving MP exploitation and maximum availability, and makes it possible to
balance a workload across a CICSplex when using dynamic transaction routing.
Multiple terminal-owning regions and application-owning regions enable terminal
users to log on to any terminal-owning region and to receive the same service from
each one; they also enable any application-owning region in a set of identical
application-owning regions to run any transaction defined to that set.

Cloning whole MVS images, as well as CICS regions and IMS subsystems,
provides similar benefits for availability and workload balancing.

CICS Connectivity
For maximum availability, all terminal-owning regions should have connectivity to all
the application-owning regions. This allows terminal users to run transactions in any

28 z/OS V1R1.0 Parallel Sysplex Application Migration

application-owning region from any terminal-owning region, regardless of which
MVS image the terminal-owning regions or application-owning regions reside in.
MRO links between regions residing in different MVS images are supported by the
cross-system MRO (XCF/MRO) access method.

The naming convention must be capable of supporting this multiplicity of connection
definitions.

You can also use IMS Intersystem Communication (ISC) to connect other
subsystems, such as IMS, to your CICS subsystems.

Workload Management
The naming convention must also be capable of supporting methods of workload
management.

In CICS, there are two aspects to workload management—workload separation
and workload balancing—and it is assumed that both may be in operation within a
CICSplex.

Workload separation: Although it is possible for all CICS application-owning
regions to run all applications, you may want to separate some workloads—perhaps
for reasons of security, or perhaps to create individual application-owning regions
for special purposes. This is the concept of workload separation.

Workload balancing: Dynamic transaction routing, which is more flexible than
static routing, requires the terminal-owning region to decide where to route an
incoming transaction, based on performance considerations. This is the concept of
workload balancing.

Workload balancing can be defined as the ability to handle a continuously varying
workload efficiently. In a CICSplex managed by CICSPlex SM, CICS, CICSPlex SM,
and MVS all cooperate to provide goal-oriented workload balancing for the CICS
workload. See “Chapter 16. Planning for Workload Management” on page 143 for
more information about goal-oriented workload balancing for CICS.

Recovery
The naming conventions described here are designed for those subsystems that
are connected in some way and have an operational relationship, such as CICS
with IMS DBCTL or DB2, and IMS with IRLM or DB2.

MVS provides automatic restart management for failed subsystems, components,
and applications. This facility plays an important part in the availability of key MVS
components and subsystems, which in turn affects the availability of data. When a
subsystem such as CICS, DB2, or IMS DB fails, it might be holding locks that
prevent other applications from accessing the data they need. MVS automatic
restart management quickly restarts the failed subsystem; the subsystem can then
resume processing and release locks, making data available again to other
applications. The naming convention, therefore, must enable automatic restart
management to identify relationships between subsystems. For this purpose, our
naming convention uses one character to identify the recovery group to which
subsystems belong. See the use of the letter G in the naming convention template,
described in 33.

There may be cases when there is no relationship—for example, terminal-owning
regions have none with other subsystems such as IMS DBCTL. However, even for
terminal-owning regions you might want to associate them with the other CICS
regions in the same MVS image.

Chapter 3. Planning Naming Conventions for CICS and Related Subsystems 29

Also, application-owning regions do not have a restart relationship with each other,
but can be related through use of the same DB2 or DBCTL.

Full Use of the Character Set
All subsystem names can be created from the characters 0 to 9, A to Z, $, @, and
#. Blanks are allowed for trailing characters. Lowercase characters are treated as
uppercase.

Four-Character Naming Restriction
MVS subsystem names are restricted to 4 characters. This restriction also applies
to system names in CICS, such as SYSIDNT and CONNECTION names (TERMIDs
are also restricted to 4 characters). This significantly restricts the possible
combinations for naming.

Because some subsystem names are defined at installation time, you need to give
very early consideration to the names you are going to choose—changing names
later can be difficult. Table 2 describes how the various CICS, DB2, IMS DBCTL,
IMS, and IRLM systems are defined, and how the names are used between the
subsystems.

Table 2. Application Subsystem Names

Subsystem Where defined initially Used by

CICS In a CONNECTION resource
definition and on the
SYSIDNT system initialization
parameter. Note: This
system name is not used as
the formal MVS subsystem
name in the IEFSSNxx
PARMLIB member. CICS is
always defined in the
subsystem name (SSN) table
as “CICS”.

Not required, either by CICS
or other subsystems, but is
recommended for MRO
connection definitions. See
“Chapter 14. Planning the
Resource Definitions” on
page 121 for examples of
such use.

DB2 In the IEFSSNxx PARMLIB
member; and in the DB2
resource control table.

CICS, when specified on the
CICS DB2 connection
command to override the
DB2 name specified in the
DB2 resource control table.

IMS DB In the IMS system generation
macros.

CICS, when using
IMS DBCTL. Specify the
IMS DBCTL name either in
the database resource
adapter (DRA) table or in the
IMS connection command
override. Also used by
IMS TM.

IRLM In the IEFSSNxx PARMLIB
member; during IMS system
definition; in the DB2
resource control table.

IMS online systems,
IMS DBCTL, and DB2
subsystems.

Designing Effective Naming Conventions
Naming conventions should be designed with clearly defined objectives in mind,
such as those that follow.

30 z/OS V1R1.0 Parallel Sysplex Application Migration

Be clear and meaningful
Ideally the naming conventions should clearly indicate:

v The type of subsystem, such as the type of CICS region, the type of
database manager, and so on

v Whether the subsystem has an association with any other subsystem(s) such
as a CICS region with its IMS DBCTL

v How many subsystems there are of that particular type, such as the number
of CICS application-owning regions

v The CICSplex that the CICS region is a member of

v The other regions to which a CICS region is connected.

A good, meaningful, naming convention should make it possible to determine,
where applicable, all of the above from the various subsystem names.

Aid problem determination
Naming conventions should aid the problem determination task. For example, if
a transaction abends, it is helpful to be able to derive useful information from
the SYSIDNT, such as whether it is a terminal-owning region or an
application-owning region; which MVS image the transaction is running on; and
so on. (The naming convention described in 31 does not include a specific
element to indicate the MVS image, but the recovery group code can be taken
to indicate the preferred MVS image.)

Aid replication of system definitions
The use of cloning requires naming conventions that enable you to clone CICS
regions, and IMS DBCTL and DB2 subsystems, with the minimum of effort (that
is, the minimum number of changes to resource definitions, system initialization
parameters, and so on).

Be simple
Keep the names as simple as possible so that they are easily identified.

Aid automation
Naming conventions should satisfy automation requirements. For example, if
the CICS application-owning regions AOR1, AOR2, and AOR3 are currently
active and more CICS capacity is required, automatic operations products can
easily determine that the next CICS system to start should be AOR4.

Aid command abbreviation
Naming conventions should allow the use of a “wildcard” character, such as an
asterisk (*). For example, when our suggested naming convention is used,
issuing the CICS CEMT INQUIRE CONNECTION(D*) command in a CICS
region returns all the connections from that region to other regions in the same
CICSplex.

Allow for growth
If you are running multiple CICS systems in a sysplex, where it is essential to
have the ability to add new regions to enable effective workload balancing, it is
important that the naming conventions you adopt allows for growth.

The Naming Convention
The naming convention discussed here is designed for 4-character names, and is
based on the following 4-character template:

C T G I

Chapter 3. Planning Naming Conventions for CICS and Related Subsystems 31

Note: For those CICS names that can be up to 8 characters long, the general
recommendation is that the letters CICS are used for the first 4 characters,
particularly for production regions. The C symbol (see below) is designed to
identify any logical collection of subsystems, such as an entire CICSplex and
its associated subsystems; it can be used to distinguish test, maintenance,
and other (non-production) subsystems.

For some subsystems, such as CICS, the structure is hierarchical with C as the
highest level in the structure and I as the lowest. DB2 is an exception, as explained
in the description of the template letter G in 33.

The CTGI template has the following meaning:

C identifies a logical collection of subsystems, such as a CICSplex and any
associated subsystems such as IMS DBCTL and DB2.

This is a high-level qualifier that enables multiple subsystems to be logically
grouped together. Some possible reasons for doing this are:

v Company separation—where you are running more than one
company’s transactions within a sysplex environment, but with each
company using its own set of subsystems, such as a CICSplex and
associated IMS DBCTL, DB2, and IRLMs. The application workload
could also be separated at the CICSplex level on a different basis, such
as by department, or by geographical location. For example, if a regional
data center has only one large CICSplex, the initial character can be
used to denote the geographical region, such as D for the Dallas
CICSplex.

v Replication of specific business applications—for example, an
insurance application. The application could then be installed in different
CICSplexes at the same, or different, regional data centers, accessible
via APPL names that are distinguished by a unique CICSplex identifier.

This would enable data centers to be merged on one sysplex at a single
location, where the CICSplexes would continue to be identified by the
unique CICSplex identifier.

v Separation of test and production regions.

T identifies the type of region, or subsystem, where:

A indicates an application-owning region (AOR).

B indicates a DB2 subsystem.

C indicates a control-owning region (COR), such as a
CICSPlex SM CICS managing address space (CMAS).

D indicates a CICS database-owning region (DOR), or an
IMS DBCTL subsystem.

A CICS local DL/I region should be used only until the
databases can be migrated to IMS DBCTL.

F indicates a file-owning region (FOR).

I indicates an IRLM that supports an IMS TM or IMS DBCTL
subsystem.

L (or J) indicates an IRLM that supports a DB2 subsystem.

P indicates a printer-owning region (POR).

32 z/OS V1R1.0 Parallel Sysplex Application Migration

Q indicates a queue-owning region (QOR) for temporary
storage, transient data, or both.

R indicates a general resource-owning region (ROR).

T indicates a terminal-owning region (TOR).

G identifies a recovery group, or a DB2 subsystem that is a member of a
DB2 data sharing group.

This part of the naming structure enables you to group those subsystems
that have some intersystem relationship with each other. It is relevant to
recovery operations, where subsystems in a recovery group have some
recovery and restart considerations in common.

Affinity groups and independent groups are characterized as follows:

v Affinity groups
– These are groups of subsystems that are associated with each other

in some way; for example, a group of CICS application-owning
regions that have an affinity with a particular database manager
subsystem such that they always need to connect to the same
subsystem, such as IMS DBCTL or DB2. When one region in a
recovery group is moved to a new MVS, they must all be moved.

v Independent groups
– The regions in such groups have no affinities with each other, apart

from being the same type of region; for example, terminal-owning
regions. In this case, you could choose 0 (zero) as the group
character, or one of the #, $, or @ symbols.

For example, if a Dallas CICSplex supports five terminal-owning
regions, they can be identified under our naming convention as DT01
through DT05. The numbers 1 through 5 identify the cloned
terminal-owning regions, and the 0 indicates there is no group
relationship, either between the terminal-owning regions or between
the terminal-owning regions and any other subsystem.

Notes:

1. For terminal-owning regions to be true clones, they should all
have identical links to all the application-owning regions.

2. Although we have used here the example of terminal-owning
regions as being regions that may have no special recovery
relationships, system management considerations may dictate
otherwise. For example, if you use automatic recovery procedures,
you might want to assign to the terminal-owning regions the same
recovery group letter that you assign to the other CICS regions
that reside on the same MVS, as we have done in our target
configuration, shown in Figure 1 on page 18.

I identifies iterations or, for DB2, it’s the group identifier.

This part of the naming structure allows regions within groups to be named
iteratively. For example, using the lexical sequence 1–9, and then A–Z, it is
possible to have 35 instances of a particular type of region in a group. If
more than 35 are required, 2 or more different “G” group characters could
be used, which could logically have the same meaning.

You can use 1 when there is only one instance of a subsystem, which may
be the case if you have only one file-owning region or only one
queue-owning region.

Chapter 3. Planning Naming Conventions for CICS and Related Subsystems 33

Alternatively, you could use the characters #, $, @, or 0 to denote that
there are no iterations within the group.

Applying the Naming Conventions for CICS
Using the CTGI template described above, it is possible to construct the principal
names used by all the subsystems in a sysplex.

For CICS VTAM APPL Names (APPLIDs)
You need to consider the definition of VTAM names to several subsystems—to
CICS, to VTAM, and to RACF, as follows:

v You can specify two forms of the VTAM APPL name to CICS:

– The VTAM APPL name that is unique to one specific CICS region (VTAM
application).

This is specified on the APPLID system initialization parameter, as in previous
releases of CICS.

– The VTAM generic resource name that applies to a group of CICS regions,
such as an entire CICSplex.

This is specified on the GRNAME system initialization parameter.

v In VTAM, you specify the application program major nodes (APPLs). If you use
generic naming for your APPL definitions for CICS, you avoid the need to create
a specific APPL definition for each CICS region.

v In RACF, you can define APPL resource class profiles for APPLIDs, to control
which userids can access a VTAM application (CICS region).

You should consider all these related requirements when planning your naming
strategy for CICS APPLIDs.

Specific CICS APPLIDs
You can use the CTGI template, together with some suitable prefix letters, to create
the CICS APPLID.

Thus, with CICS as the prefix, the APPLID is of the form:
CICSCTGI,

In all the examples shown in this book we have used the letters CICS as the prefix.
You might want to use prefix characters that conform to some other convention,
such as network naming standards. However, we recommend that you use the
same first four characters for all the regions in the CICSplex.

You can see several examples of APPLIDs based on this convention later in this
chapter.

Applying the naming convention should ensure that APPLIDs are unique within a
VTAM network.

VTAM Generic Resource Names
The VTAM generic resource name is a name by which a group of CICS
terminal-owning regions in a CICSplex are known to VTAM. You specify the name
on the CICS GRNAME system initialization parameter, and CICS registers itself to
VTAM as a member of the generic resource.

The generic name enables terminal end users to log on to a CICSplex as if it was a
single VTAM application. As each logon request to a CICS generic resource name

34 z/OS V1R1.0 Parallel Sysplex Application Migration

is received, VTAM selects the specific APPLID of one of the CICS terminal-owning
regions that registered as a member of the generic resource.

The recommended form for GRNAME operands is the same as for specific
APPLIDs: use CICS as the first 4 characters followed by the identifying character
for the CICSplex (for example, CICSD for the Dallas CICSplex). You are also
recommended to pad the name to the full 8 characters with a generic symbol, as
follows:
GRNAME=CICSD###

You should apply the VTAM generic name to only the CICS terminal-owning regions
in a CICSPlex.

VTAM APPL Definitions
When defining a VTAM application program major node (APPL), you normally
specify the full APPL name on the APPL definition statement.

Instead of defining a large number of specific APPL names, VTAM allows you to
use a “wildcard” symbol in the APPL name to denote a generic definition that can
be shared by a number of CICS regions. When you use this facility, VTAM uses the
generic VTAM APPL definition whenever the generic name matches the
appropriately masked APPLID specified on the CICS OPEN VTAM ACB request.

For example, you could use the following definition for the set of terminal-owning
regions in the Dallas CICSplex:

* Generic APPL Definition for All CICS Regions in the DALLAS CICSPLEX

CICSD* APPL AUTH=(ACQ,VPACE,PASS),VPACING=0,EAS=5000, X

PARSESS=YES,SONSCIP=YES
**

In the example, the definition would be used by VTAM for all the CICS
terminal-owning regions that log on to VTAM with specific APPLIDs that begin with
the letters CICSD.

Note that the name you use for the VTAM generic APPL definition does not have to
relate in any way to the generic resource name you specify on the CICS GRNAME
system initialization parameter. However, it is recommended that you use the VTAM
generic APPL name as the basis of the generic resource name you specify on the
GRNAME parameter. For example, if CICSD* is defined on a VTAM APPL
definition, use CICSD as the first five characters of the GRNAME parameter for the
CICS terminal-owning regions, then pad this to 8 characters with the # symbol to
give CICSD### as the full generic resource name.

For Application-Owning-Regions: If you also need to define APPL definitions for
your application-owning regions, create a separate generic APPL for these. This is
because you need to specify a low value on the EAS parameter for the
application-owning regions compared with that of the terminal-owning regions. The
following is an example of an APPL definition. You could use it for the
application-owning regions in the same CICSplex as the terminal-owning regions in
the previous example.

* Generic APPL Definition For All CICS Regions in the DALLAS CICSPLEX

Chapter 3. Planning Naming Conventions for CICS and Related Subsystems 35

CICSDA* APPL AUTH=(ACQ,VPACE,PASS),VPACING=0,EAS=10, X
PARSESS=YES,SONSCIP=YES

**

RACF APPL profiles
In terminal-owning regions that specify a VTAM generic resource name, the VTAM
APPL check that CICS makes during signon processing (to verify that the user is
authorized to sign on to a CICS region) is made using the VTAM generic resource
name. Therefore, for VTAM generic resources, you must create a RACF profile in
the APPL resource class using the generic resource name specified on the
GRNAME system initialization parameter as the profile name.

For example, if the VTAM generic resource name is CICSD###, the RDEFINE
command to create the APPL profile is as follows:

* APPL Generic Resources Profile for the DALLAS CICSPLEX

RDEFINE APPL CICSD### UACC(NONE) NOTIFY(userid)

See the CICS RACF Security Guide for more information about controlling access
to the VTAM APPL of a CICS region.

For SYSIDNT Names
The SYSIDNT system initialization parameter defines the private name by which a
CICS region identifies itself. For this name, use the characters defined by the CTGI
template.

Using the CTGI template enables you to create SYSIDNTs that are unique within a
sysplex, and also unique across sysplexes if a CICSplex spans more than one
sysplex.

Note: Unique SYSIDNT names are not required nor enforced by CICS, because
the SYSIDNT is known only to the CICS region in which it is defined.

For CONNECTION Names
To define a link between two CICS regions requires two CONNECTION definitions,
one connection definition being installed in each linked CICS region. For example,
to define the link between a terminal-owning region and an application-owning
region, you must:

v Define and install a CONNECTION definition in the terminal-owning region that
defines its link with the application-owning region, and

v Define and install a CONNECTION definition in the application-owning region that
defines its link with the terminal-owning region.

Provided the SYSIDNTs are unique within a CICSplex, you can use the SYSIDNTs
as the connection names. Use the SYSIDNT defined for a CICS region as the
name of the CONNECTION definition installed in its partner region.

An example based on the CTGI convention is shown in Figure 2 on page 37, where:

v The CICSplex is D (for Dallas).

v The region types are T and A for the terminal-owning region and
application-owning region, respectively.

v Each region is the first, or only, member in its group, identified by the numeral 1.

36 z/OS V1R1.0 Parallel Sysplex Application Migration

Note: Although a terminal-owning region does not usually have any affinity with
any particular subsystem (such as IMS DBCTL or the CICS
application-owning regions), it can be useful to consider it as being in the
same group as the other CICS regions in the same MVS image. Hence our
example uses the group code A, the same as the application-owning region.

Connection names should be unique within a CICSplex.

Using the CTGI template enables you to create CONNECTION names that are
unique within a sysplex, and also unique across sysplexes if a CICSplex spans
more than one sysplex.

Note: A connection name installed in a CICS region cannot be the same as the
SYSIDNT of that CICS region.

Generic Connection Names
For situations where complete business applications are operated in more than one
CICSplex (perhaps running in different data centers), you can use a generic
character in the connection name. Using this modification to the standard naming
convention, you can assign a generic character as the CICSplex identifier to
represent a number of identical CICSplexes, instead of a specific character for each
instance of the CICSplex. In this way you can reduce the number of CICS resource
definitions you need to maintain.

It is recommended that you use a character from the set of #, @ or $ symbols. This
avoids using an alphabetic character that might conflict with a chosen alphabetic
sequence.

Using a generic connection name enables CICS remote resource definitions to be
portable across CICSplexes. For example, a remote file resource definition can
refer to one of these generic connection names. You can then install this file
resource definition in as many regions, in as many CICSplexes, as you want, thus
reducing the number of file resource definitions you need to maintain. This
technique is suitable for all resources that can be remote: files, programs,
temporary storage and transient data queues. However, it does not apply to remote
transactions because the use of dynamic transaction routing means that you do not
need to specify a remote system name.

The technique can also be useful with application programs that specify a remote
system name on an EXEC CICS command. The same program could be installed
in more than one CICSplex, without the need to maintain separate versions that
specify explicit SYSIDs.

The connection definition itself cannot be cloned, because it contains the
NETNAME of the system that the connection refers to, and the NETNAMEs should
be unique. However, you can define connection definitions with the same name but

APPLID=CICSDAA1
CONNECTION(DTA1)
SYSIDNT=DAA1

In the AORIn the TOR

APPLID=CICSDTA1
SYSIDNT=DTA1
CONNECTION (DAA1)

Figure 2. Example of Connection Naming Between Terminal-Owning Region and
Application-Owning Region

Chapter 3. Planning Naming Conventions for CICS and Related Subsystems 37

different NETNAMEs, provided they either reside in different CSDs or in different
groups within the same CSD. In general, you should use the same CSDs for all the
CICS regions in a CICSplex, only using a different CSD for a different CICSplex
within the same MVS sysplex.

The use of generic connection names is illustrated in Figure 3—see also the notes
that follow the figure.

Notes:

1. In Figure 3, the CICSplexes are identified as D (for Dallas) and W (for
Washington) in all except the CONNECTION names for the AOR–FOR links.

2. The connection definition names for the links between the application-owning
regions and the file-owning regions can be common for sets of
application-owning regions and common for sets of file-owning regions, in every
respect except for the NETNAME.

3. Remote file definitions in the application-owning regions in both CICSplexes
need to specify only #F01 as the REMOTESYSTEM name.

/ / / / / / FOR(WF01) / / / / /

/

/

/

/

/

/

FOR (DF01)

APPLID:
SYSIDNT:

CICSDF01
DF01

CONNECTIONs to:

#A01 #A02

/ / / / / / AOR(WA02) / / / / /

/

/

/

/

/

/

AOR (DA02)

APPLID:
SYSIDNT:

CICSDA02
DA02

CONNECTIONs to:

#F01 DT01

/ / / / / / AOR(WA01) / / / / /

/

/

/

/

/

/

AOR (DA01)

APPLID:
SYSIDNT:

CICSDA01
DA01

CONNECTIONs to:

DT01 #F01

/ / / / / / TOR(WT01) / / / / /

/

/

/

/

/

/

TOR (DT01)

APPLID:
SYSIDNT:

CICSDT01
DT01

CONNECTIONs to:

DA01 DA02

Figure 3. Example of generic connection naming

38 z/OS V1R1.0 Parallel Sysplex Application Migration

For SESSIONS Definitions with and without Prefixes
CICS regions communicate over sessions carried on a connection linking the
regions. The number of sessions available on any connection is defined in the
sessions resource definition associated with the MRO connection. CICS generates
the 4-character terminal identifiers it requires for each send and receive session,
each of which is represented by an entry in the terminal control table (TCT).

In releases earlier than CICS for MVS/ESA 4.1, CICS uses 2-character send and
receive prefixes, together with the number of send and receive sessions for a link,
to create the TCTTE identifier (termid) for each session. This can limit the choice of
characters available for these session identifiers, because you can use only two
characters (for the prefixes), the remainder of the termid being a number that CICS
increments to the specified number of sessions.

In CICS 4.1 and later, this limitation does not apply because CICS generates the
whole of the termid for the MRO sessions. The generated termids comprise a
3-character identifier, prefixed by a > symbol for the send sessions and a < symbol
for the receive sessions. The 3-character identifiers begin with AAA for the first
connection, and continue in ascending sequence until the number of session entries
reaches the limit set by the send and receive counts. The sequencing continues for
the second and subsequent connections. Therefore, after CICS 4.1, a naming
convention for sessions is unnecessary, although you can continue to specify a
prefix if you want to.

Because you can create a CICSplex that mixes earlier releases of CICS with CICS
4.1 and later, the following naming convention for sessions is suggested for use
with the earlier releases, and for those users who continue to use the old prefix
method.

Defining Sessions With Predefined Prefixes
Because all the terminal identifiers in a TCT must be unique, it is important that you
choose session terminal prefixes that do not conflict with terminal identifiers chosen
for real terminals (either explicitly defined ones, or identifiers selected by the
terminal autoinstall program). One possible solution is to reserve letters at the end
of the alphabet for the first character of session prefixes, and ensure these are
never used for the initial character of other types of terminal. For example:

The second character of the send/receive session prefix represents the iteration
number for cases where terminal-owning regions have links with multiple
application-owning regions, and application-owning regions have links with multiple
terminal-owning regions, and so on.

In our examples of the naming convention we have reserved the letters S, T, U, V,
W, X, Y, and Z. They are used for the initial prefix characters for all sessions
between terminal-owning regions, application-owning regions, file-owning regions,
and queue-owning regions; allocated to send and receive sessions as shown in
Figure 4 on page 41 and Figure 6 on page 42. For ease of illustration, we have
used the following terms to describe the links between regions:

Down links These describe the links:

v From terminal-owning regions to application-owning regions

Reserved for
SESSIONS prefixes

S T U V W X Y ZA B C D

Reserved for the initial letter of
terminal identifiers

Chapter 3. Planning Naming Conventions for CICS and Related Subsystems 39

v From application-owning regions to file-owning regions,
queue-owning regions, and resource-owning regions,

These down links are assigned the send and receive session prefix
letters Y and Z.

Up links These describe the links:

v From application-owning regions to terminal-owning regions

v From file-owning regions, queue-owning regions, and
resource-owning regions to application-owning regions

These up links are assigned the send and receive session prefix
letters W and X.

Right links and left links
These terms are used to describe links between application-owning
regions. Where application-owning regions communicate with each
other, for purposes such as linking to remote application programs
using distributed program link commands, links are referred to as
lateral right links and left links:

v Right links are assigned the letters U and V.

v Left links are assigned the letters S and T.

40 z/OS V1R1.0 Parallel Sysplex Application Migration

The MRO configuration using the SEND/RECEIVE prefix conventions described in
Figure 4 would give the region-to-region connectivity shown in Figure 5 on page 42.

Up links from
one FOR and one
QOR to each of
4 AORs, using
letters W and X
for the prefixes

To AOR4.
SEND.... W4
RECEIVE. X4

To AOR3.
SEND.... W3
RECEIVE. X3

To AOR2:
SEND.... W2
RECEIVE. X2

To AOR1:
SEND.... W1
RECEIVE. X1

QOR1

To AOR4:
SEND.... W4
RECEIVE. X4

To AOR3:
SEND.... W3
RECEIVE. X3

To AOR2:
SEND.... W2
RECEIVE. X2

To AOR1:
SEND.... W1
RECEIVE. X1

FOR1

Down links
from 4 AORs to
one FOR and one
QOR, using
letters Y and
Z for the
prefixes

Up links from
4 AORs to each
of 2 TORs,
using letters
W and X for
the prefixes

To QOR1:
SEND.... Y2
RECEIVE. Z2

To FOR1:
SEND.... Y1
RECEIVE. Z1

To TOR2:
SEND.... W2
RECEIVE. X2

To TOR1:
SEND.... W1
RECEIVE. X1

AOR4

To QOR1:
SEND.... Y2
RECEIVE. Z2

To FOR1:
SEND.... Y1
RECEIVE. Z1

To TOR2:
SEND.... W2
RECEIVE. X2

To TOR1:
SEND.... W1
RECEIVE. X1

AOR1

To QOR1:
SEND.... Y2
RECEIVE. Z2

To FOR1:
SEND.... Y1
RECEIVE. Z1

To TOR2:
SEND.... W2
RECEIVE. X2

To TOR1:
SEND.... W1
RECEIVE. X1

AOR3

To QOR1:
SEND.... Y2
RECEIVE. Z2

To FOR1:
SEND.... Y1
RECEIVE. Z1

To TOR2:
SEND.... W2
RECEIVE. X2

To TOR1:
SEND.... W1
RECEIVE. X1

AOR2

To AOR4:
SEND.... Y4
RECEIVE. Z4

To AOR3:
SEND.... Y3
RECEIVE. Z3

To AOR2:
SEND.... Y2
RECEIVE. Z2

To AOR1:
SEND.... Y1
RECEIVE. Z1

TOR2

To AOR4:
SEND.... Y4
RECEIVE. Z4

To AOR3:
SEND.... Y3
RECEIVE. Z3

To AOR2:
SEND.... Y2
RECEIVE. Z2

To AOR1:
SEND.... Y1
RECEIVE. Z1

Down links from
2 TORS to each
of 4 AORs,
using initial
letters Y and Z
for the prefixes

TOR1

Figure 4. Allocation of SEND/RECEIVE Prefixes for Down and Up Links

Chapter 3. Planning Naming Conventions for CICS and Related Subsystems 41

Figure 6 illustrates the use of the letters S, T, U, and V for the lateral right and left
links between AORs.

For TERMINAL Names
For a CICSplex environment with multiple terminal-owning regions, you are strongly
recommended to make the 4-character CICS terminal identifiers (termids) unique
across the whole CICSplex. In CICSplex with a single terminal-owning region,
termids need to be unique only within the terminal-owning region.

In a CICSplex with multiple terminal-owning regions, however, problems could arise
over naming temporary storage queues if the termid were used as part of the queue
name (which is not uncommon). For example, if two terminals connected to different
terminal-owning regions are assigned the same termid, there could be a conflict
over temporary storage queue names. This is particularly important in a sysplex
where one of the CICS regions is a queue-owning region (QOR) managing all the
temporary storage queues for a CICSplex. If two terminals try to access the same
queue instead of different queues, the results are unpredictable.

The following techniques will help to ensure unique terminal naming:

Figure 5. Sample MRO Configuration

To AOR3:
SEND.... U1
RECEIVE. V1

To AOR1:
SEND.... S1
RECEIVE. T1

AOR3

AOR1

To AOR2:
SEND.... U1
RECEIVE. V1

To AOR2:
SEND.... S1
RECEIVE. T1

AOR2

Figure 6. Allocation of SEND/RECEIVE Prefixes for Lateral Links

42 z/OS V1R1.0 Parallel Sysplex Application Migration

1. Ensure that NETNAMEs are unique. Ensure also that their characters are
arranged in such a way that the CICS autoinstall exit can extract a part of the
netname to construct a 4-character termid that remains unique within the
CICSplex.

2. Divide the full range of terminal names into discrete subsets, and assign a
different subset to each terminal-owning region in the CICSplex. For example,
assign to TOR1 a pool of terminal names in the range AAAA to DZZZ, and
assign to TOR2 a pool of terminal names in the range EAAA to HZZZ. The
autoinstall user program can then choose an unused termid from the
appropriate pool, and no other terminal-owning region can have chosen the
same name.

However, this second solution can present problems for transactions initiated by
EXEC CICS START commands that specify delay interval and a TERMID.

For CICS JOB Names
You can start a CICS region either as a batch job or as a started task. You may
need to modify the naming convention for each method.

Batch Jobs
Use the CICS region APPLID for the job name. This can make it easy to identify all
CICS systems in the sysplex. For example, the SDSF DA panel (“Display active
users of the system”) shows the jobname as the first field in the display of active
users.

You could build one common procedure for all CICS regions, or alternatively create
one for each type of region (designated by the letter T in the naming convention),
using CICS as the first four characters of the procedure name. If you are using
symbolic parameters for values such as data set qualifiers and region size, and a
suffix or similar qualifier for a SYSIN data set, your procedures can be called by a
variety of jobs or job steps. See the CICS-supplied sample procedure, DFHSTART,
for an example.

Started Tasks with JOB support
Use one common procedure for all CICS regions or alternatively create one for
each type of region (designated by the letter T in the C T G I template), using CICS
as the first four characters of the procedure name. On the START command, use
the CICS APPLID on the JOBNAME parameter. This makes for ease of
identification when you are using facilities such as SDSF.

For example, if a procedure contains the following statements and parameters:
//CICSTASK EXEC PGM=DFHSIP,REGION=150M,
// PARM='START=&START,SYSIDNT=&SYSIDNT,SYSIN'
//* The SYSIN data set containing system initialization parameters
//SYSIN DD DISP=SHR,DSN=&DSINDEX..CICSD###.SYSIN(CICS&CLONE)
//*
//* The temporary storage data set
//DFHTEMP DD DISP=SHR,DSN=&DSINDEX..CNTL.CICS&SYSIDNT..DFHTEMP

the command for a terminal-owning region that has an APPLID of CICSDTA1 could
be:
START CICSTASK,JOBNAME=CICSDTA1,DSINDEX=CICS410,SYSIDNT=DTA1,CLONE=DT##,START=AUTO

We recommend that you use the JOBNAME parameter on the START command.
This enables you to use the JOB support for started tasks and started jobs.

Chapter 3. Planning Naming Conventions for CICS and Related Subsystems 43

For information about issuing multiple START commands, see “Cloning CICS
Regions” on page 134.

For Data Set Names
The CICS System Definition Guide recommends a naming convention for CICS
data sets, in which the APPLID is used as one of the qualifiers. Our naming
convention supports this recommendation.

The following are the symbolic parameters, for use in data set names, that we use
in our CICS startup procedure shown in “Chapter 17. Planning the CICS Startup
Procedures” on page 149:

INDEX1 Represents the high-level data set qualifier. In our startup
procedure shown in Figure 43 on page 159 we use the CICS
release identifier in the form CICS410.

SYSIDNT Represents the local name for each CICS region, and we also use
this to represent the last four characters of the second-level data
set qualifier.

For example:
//DFHGCD DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHGCD

Using the C T G I convention, assigning the value DTA1 to
&SYSIDNT identifies this data set as belonging to a CICS region
with an APPLID of CICSDTA1 (a terminal-owning region in a
CICSplex identified by the letter D for Dallas).

If you have to apply the naming convention to all the CICS system data sets, the
DD statements you might need for the CICS startup procedure are shown in
Figure 7.

//* The global catalog data set
//DFHGCD DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHGCD
//* The local catalog data set
//DFHLCD DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHLCD
//* The temporary storage data set
//DFHTEMP DD DISP=SHR,DSN=&INDEX1..CNTL.CICS&SYSIDNT..DFHTEMP
//* The transient data intrapartition data set
//DFHINTRA DD DISP=SHR,DSN=&INDEX1..CNTL.CICS&SYSIDNT..DFHINTRA
//* The restart data set
//DFHRSD DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHRSD
//* The journal archive control data set
//DFHJACD DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHJACD
//* The XRF control data set
//DFHXRCTL DD DISP=SHR,DSN=&INDEX1..CNTL.CICS&SYSIDNT..DFHXRCTL
//* The XRF message data set
//DFHXRMSG DD DISP=SHR,DSN=&INDEX1..CNTL.CICS&SYSIDNT..DFHXRMSG
//* The transaction dump data sets
//DFHDMPA DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHDMPA
//DFHDMPB DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHDMPB
//* The auxiliary trace data sets
//DFHAUXT DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHAUXT
//DFHBUXT DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHBUXT
//* The system log data sets
//DFHJ01A DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHJ01A
//DFHJ01B DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHJ01B
//DFHJ01X DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHJ01X

Figure 7. Unique CICS Data Sets Required for Each Region

44 z/OS V1R1.0 Parallel Sysplex Application Migration

Sharing CICS System Data Sets
For the common data sets that can be shared between CICS regions, you do not
need the second-level data set qualifier to identify the CICS regions to which the
data sets belong. Typically, there are three data sets in this category:

v The CICS system definition (CSD) data set

v The journal partitioned data set, DFHJPDS

v The SYSIN data set.

CICS System Definition Data Set
The CSD data set holds the CICS resource definitions. Where multiple regions are
part of the same CICSplex, we recommend that all regions share the data set. Most
CICS regions in a CICSplex require the same resource definitions (for example, for
transactions), and it is good practice to share the data set, and so minimize the
overhead involved in maintaining definitions. See Figure 8 for an example of a data
definition (DD) statement for the CSD.

As an alternative to having a DD statement for the CSD in the startup procedure,
you can specify the data set name and disposition option using the CSDDSN and
CSDDISP system initialization parameters. For example, if you specify
CSDDSN=CICS410.CICSD###.DFHCSD and CSDDISP=SHR in the SYSIN data set that
contains the system initialization parameters for each region, CICS file control uses
dynamic allocation to allocate the data set. This is the recommended method for
defining the CSD to CICS.

CICS Journal Partitioned Data Set
The CICS journal data set, DFHJPDS, holds the skeleton JCL for automatic journal
archiving. Not only can this data set be shared between all the regions in the
CICSplex, but the member containing the archive job can also shared.

SYSIN Data Set
The CICS SYSIN data set holds the system initialization parameters that are
common to cloned CICS regions. Using a permanent SYSIN data set, you can use
the CICS default system initialization table for all regions, and define those
parameters that are common to clones in a SYSIN data set member.

Defining the Shared CICS Data Sets
Shared data sets can be identified within the sysplex by means of the DSINDEX
high-level qualifier, and a second-level qualifier that identifies the CICSplex, as
shown in Figure 8. The SYSIN data set in this example also shows the use of a
symbolic parameter, for the member name that contains the clone-specific system
initialization parameters.

//* The system definition data set
//DFHCSD DD DISP=SHR,DSN=&INDEX1..CICSD###.DFHCSD
//* The journal partitioned data set
//DFHJPDS DD DISP=SHR,DSN=&INDEX1..CICSD###.DFHJPDS
//* The SYSIN partitioned data set
//SYSIN DD DISP=SHR,DSN=&INDEX1..CICSD###.SYSIN(CICS&CLONE.)

Figure 8. Shared CICS Data Sets

Chapter 3. Planning Naming Conventions for CICS and Related Subsystems 45

The data set naming conventions described here are an important factor when
cloning CICS regions. See “Cloning CICS Regions” on page 134 for more
information.

Example of Using the Naming Convention
The target configuration shown in Figure 1 on page 18 provides an example of the
naming convention applied to a CICSplex that runs in four of the six MVS images in
the sysplex. In this example, we use the letter D to identify the Dallas CICSplex.
The characteristics of the configuration are described under the next few headings.

Six CPCs and Six MVS Images
Each CPC shown in the target configuration runs a single MVS image, with system
identifiers MVSx where x is one of the letters A—F.

v MVSA, MVSB, MVSC, and MVSD are clones, with each MVS image running the
same set of CICS regions.

v MVSE and MVSF are clone systems supporting the IMS TM subsystems.

The Terminal-Owning Regions
All the terminal-owning regions are clones, with each terminal-owning region able to
route transactions to any of 12 cloned application-owning regions.

Using the naming convention the TORs are named DTA1, DTB1, DTC1, and DTD1.

Although the terminal-owning regions do not have an affiliation with another
subsystem in the same sense as the application-owning regions that are connected
to IMS DBCTL and DB2, they are assigned the same group identifier as the
application-owning regions that are in the same MVS image. This is useful when
you are using automatic restart procedures to restart all the CICS regions on
another MVS image.

IMS DBCTL and DB2 Workloads
The total workload for the CICSplex shown in the target configuration (Figure 1 on
page 18) needs access to the following types of data:
v DL/I data in DBCTL-managed databases
v DB2 data in DB2-managed databases
v VSAM data in data sets accessed through SMSVSAM servers
v CICS shared temporary storage queues through a TS server.

The Application-Owning Regions
The application-owning regions are allocated equally across the four MVS images
MVSA, MVSB, MVSC, and MVSD, and all are identical clones. They are all capable
of handling CICS-DL/I or CICS-DB2 transactions. Using the C T G I convention,
their names all begin with DA (for Dallas application-owning regions), followed by a
group character identifying them with their respective MVS image, and the iteration
numbers 1, 2 and 3. Thus the SYSIDs are DAA1 through DAA3; DAB1 through
DAB3; DAC1 through DAC3; and DAD1 through DAD3.

All these application-owning regions have an affiliation with the IMS DBCTL in their
respective MVS images:
v The application-owning regions in MVSA are affiliated with the IMS DBCTL

named DDA1.
v The application-owning regions in MVSB are affiliated with the IMS DBCTL

named DDB1.

46 z/OS V1R1.0 Parallel Sysplex Application Migration

v The application-owning regions in MVSC are affiliated with the IMS DBCTL
named DDC1.

v The application-owning regions in MVSD are affiliated with the IMS DBCTL
named DDD1.

The application-owning regions also have an affiliation with the DB2 subsystems in
their respective MVS images:
v The application-owning regions in MVSA are affiliated with the DB2 named

DBA1.
v The application-owning regions in MVSB are affiliated with the DB2 named

DBB1.
v The application-owning regions in MVSC are affiliated with the DB2 named

DBC1.
v The application-owning regions in MVSD are affiliated with the DB2 named

DBD1.

Note: CICS regions do not have the same close affiliation to an SMSVSAM, or
temporary storage, server as they do with DB2 and DBCTL, because they do
not connect to a specific named instance of these servers. CICS connects
automatically to the SMAVSAM or TS server that is active in its MVS image
at the time of CICS initialization. In the event of any kind of failure, it doesn’t
matter to which SMSVSAM CICS reconnects from the point of view of
recovery and transaction backout. Backout considerations do not apply
shared TS pool queues managed by a TS server, because such queues are
not recoverable.

Connections
For information about how to define the links for this configuration, using the
minimum number of CONNECTION and SESSIONS definitions, see “Chapter 14.
Planning the Resource Definitions” on page 121.

Chapter 3. Planning Naming Conventions for CICS and Related Subsystems 47

48 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 4. Planning the Terminal-Owning Regions

In “Chapter 2. Planning the Subsystem Configuration for a Sysplex” on page 17, we
proposed a target configuration for a CICSplex in a sysplex environment. This
chapter discusses in more detail the planning considerations for the terminal-owning
regions, covering the following topics:

v Transaction routing, and changing from static to dynamic transaction routing

v Splitting combined terminal-owning/application-owning regions into separate
terminal-owning regions and application-owning regions

v Planning migration to dynamic transaction routing, including the detection of
inter-transaction affinities and considerations for a dynamic transaction routing
program

v Implementing VTAM generic resources for multiple terminal-owning regions

v Creating multiple terminal-owning regions

v Implementing VTAM persistent LU-LU sessions.

Transaction Routing
The CICS transaction routing facility allows terminals or logical units connected to
one CICS region to initiate, and communicate with, transactions in another CICS
region. This means that you can distribute terminals and transactions around your
CICS regions and still have the ability to run any transaction from any terminal.

Figure 9 shows a terminal connected to one CICS region running a user transaction
in another. Communication between the terminal attached to the terminal-owning
region and the user transaction is handled by a CICS-supplied transaction called
the relay transaction.

Static and Dynamic Transaction Routing
When you define transactions to CICS, you can define them as local or remote
transactions. Local transactions always run in the terminal-owning region; that is, in
the CICS region to which the terminal initiating the transaction is directly logged on.
Remote transactions are routed to another CICS region connected to the
terminal-owning region by MRO links (or routed to other CICS regions that are
connected by CICS intersystem communication (ISC) links).

CICS supports two forms of transaction routing for remote transactions:

Figure 9. The CICS Transaction Routing Facility

© Copyright IBM Corp. 1994, 2001 49

1. Static transaction routing
The transaction resource definition is predefined with the name of a remote
CICS region to which it is to be routed for execution. Transactions defined in
this way are always routed to the specified remote CICS region. With this
method, you can change the remote destination of the specified transaction only
by manually altering and reinstalling the transaction resource definition.

2. Dynamic transaction routing
You do not need a transaction resource definition in the terminal-owning region
to specify transaction routing (unless the transaction is defined to be invoked by
means of a PF or PA key—see note). When a transaction is invoked at a user’s
terminal, CICS searches the table of installed transaction definitions for the
name of the transaction. If CICS does not find an entry in the table, CICS
automatically calls the dynamic transaction routing program to determine
whether it should be routed to a remote CICS region. This is the recommended
method for using dynamic transaction routing.

Note: If you have applications in which terminal users invoke transactions by
special task request functions, as defined by the TASKREQ attribute of
the transaction resource definition, you must define specific transaction
resource definitions for them. The elimination of the need for transaction
definitions applies only to those transactions that are invoked by a tranid.

Transactions attached in the terminal-owning region without their own
unique transaction definition are exempt from transaction attach security
checks in the terminal-owning region (unless they are run locally in the
terminal-owning region). See “Chapter 15. Planning CICSplex Security”
on page 137 for details.

Alternatively, you can use transaction resource definitions for each individual
transaction, specify the DYNAMIC(YES) attribute. For transactions defined with
DYNAMIC(YES), CICS invokes the dynamic transaction routing program to
determine where to route the transaction.

For more information, see “Defining Remote Attributes for Transaction Routing”
on page 121.

You can specify both a remote system name and dynamic transaction routing. In
this case, CICS still invokes the dynamic transaction routing program, allowing the
defined remote system name to be dynamically changed.

Using dynamic transaction routing across a CICSplex, compared with static routing,
can improve performance and improve availability for terminal end users. However,
in the section that follows you will see that we recommend you use static
transaction routing before migrating to the dynamic method. Planning and
implementing dynamic transaction routing is discussed further in 53.

Splitting CICS into Separate Terminal- and Application-Owning
Regions

If you are operating with combined terminal-owning/application-owning regions
(TOR/AORs) you are recommended to split them into separate terminal- and
application-owning regions. For example, if your combined CICS regions are
organized to support different applications as shown in Figure 10 on page 51, you
should reconfigure them as illustrated.

50 z/OS V1R1.0 Parallel Sysplex Application Migration

Splitting the existing regions into separate terminal- and application-owning regions
is a first step, using static routing definitions to route the transactions to the
appropriate application-owning region. Initially, there is no need to clone these
regions—each application-owning region should be capable of handling its
application workload as well as, and probably better than, before when they were
combined with the terminal-owning regions. Test the new terminal-owning
region—AOR configuration with static transaction routing, and later switch to using
a dynamic transaction routing program. Finally, you can replicate the single
terminal-owning region to create as many as you need to provide continuous
availability.

Alternative Using Multiple Terminal-Owning Regions: If your terminal users are
already using different APPLIDs, an alternative approach is to create multiple
terminal-owning regions to support the application-owning regions you create,
creating one terminal-owning region for each application-owning region (see
Figure 11 on page 52).

Application A Application AApplication B Application BApplication C Application C

Figure 10. CICS Region Configurations Before and After Splitting into Separate Resource Manager Regions for
Terminals and Applications

Chapter 4. Planning the Terminal-Owning Regions 51

In summary, the tasks in this stage are as follows:

1. Create a new region for terminal control only
Set up a new CICS terminal-owning region with a new VTAM APPL name, with
all the unique CICS system data sets required for a new CICS region, but
sharing the old CICS system definition (CSD) data set with the
application-owning regions.

2. Remove the old APPLIDs
It is not absolutely necessary to have VTAM APPL names for the
application-owning regions and you can remove these from your VTAM
definitions if you so choose. Terminal end users should be enabled to log on
only to the terminal-owning region. However, you may choose to allow some
special users (system programmers, for example) to log on to the
application-owning regions directly for problem determination purposes.

3. Modify VTAM front-end LOGON panels
Modify the VTAM front-end logon panel for the CICS applications, replacing the
old combined region options with the terminal-owning region only. This could
involve changes to Netview Access Services panels, or VTAM unformatted
system services (USS) tables, or SNA Application Monitor (SAMON), or to
whatever method you currently use to present application selections to network
users.

Alternatively, use multiple terminal-owning regions where the APPLIDs are the
same as those for the old combined regions.

4. Set up transaction routing definitions
Alter your existing transaction definitions so that the terminal-owning region
knows which application-owning region to route them to. Use the same
definition in both the terminal-owning region and application-owning region. For
example, the following ALTER command adds the minimum remote system
attribute necessary for static transaction routing for transaction id AC20 in group
DFH$CTXT:
ALTER TRANSACTION(AC20) GROUP(DFH$CTXT) REMOTESYSTEM(AOR1)

Application A Application B Application C

Figure 11. Alternative Initial Configuration Using Multiple Terminal-Owning Regions

52 z/OS V1R1.0 Parallel Sysplex Application Migration

You can enter this command online using the CEDA transaction, or in a batch
job using the CICS system definition utility program, DFHCSDUP. This
transaction definition works as both a remote definition for the terminal-owning
region, and a local definition for the application-owning region.

5. Define the MRO links
Define the CONNECTION/SESSIONS pairs for the terminal-owning region with
the three application-owning regions.

6. Test the configurations of separate terminal- and application-owning
regions

When you’ve completed the resource definitions, bring up all four regions and
test that:
1. The MRO connections work
2. The transactions work in the transaction routing environment.

Note: Before going into production with separate terminal-owning regions and
application-owning regions, you should review how your resource definitions
are grouped. For example, you should avoid installing resource definitions in
a terminal-owning region that are unnecessary when the transactions that
use them are being routed to an application-owning region.

Planning Migration to Dynamic Transaction Routing
After the splitting of the combined terminal- and application-owning regions and the
subsequent testing, the next step is to switch from static to dynamic transaction
routing. This is necessary to exploit workload balancing when you clone the
application-owning regions, to enable you to spread the CICS application workload
over more than one application-owning region

There are two main tasks you have to consider when planning to use dynamic
transaction routing. These are:

v The suitability of the transactions within each application for dynamic
transaction routing. You must determine whether any of the transactions are
subject to constraints that could inhibit them from being routed dynamically.

One factor that can constrain an otherwise free choice of application-owning
region is the use of particular CICS programming techniques that transactions
use to pass data one to another. See “Transaction Affinities” for information about
the kinds of affinity that can constrain dynamic transaction routing.

v The provision of a dynamic transaction routing program. You can either use
the dynamic transaction routing program provided by CICSPlex SM, or write your
own, in which case you must ensure it has the necessary logic to:

– Determine which remote systems are capable of processing the incoming
transactions

– Manage transaction affinities, where they exist

– Do workload balancing.

See “Planning a Dynamic Transaction Routing Program” on page 56 for
information about the requirements for a dynamic transaction routing program.

Transaction Affinities
There are many different CICS application programming techniques that you can
use to enable CICS transactions to pass data from one to another. Some of these
techniques require that the transactions exchanging data must run in the same

Chapter 4. Planning the Terminal-Owning Regions 53

CICS region, which imposes restrictions on the dynamic routing of transactions. If
transactions exchange data in ways that impose such restrictions, there is said to
be an affinity between them.

Basically, there are two types of affinity:
v Inter-transaction affinity
v Transaction-system affinity

Inter-transaction Affinity
Two or more CICS transactions are said to have affinity when they pass information
between them, or synchronize their activities, using techniques that require the
transactions to execute in the same CICS region. This type of affinity is
inter-transaction affinity, where a set of transactions share a common resource
and/or coordinate their processing. Inter-transaction affinity, which imposes
restrictions on the dynamic routing of transactions, can occur in the following
circumstances:

v One transaction terminates, leaving “state data” in a place that a second
transaction can access only by running in the same CICS region as the first
transaction.

v One transaction creates data that a second transaction accesses while the first
transaction is still running. For this to work safely, the first transaction usually
waits on some event, which the second transaction posts when it has read the
data created by the first transaction. This synchronization technique requires that
both transactions are routed to the same CICS region.

Transaction-System Affinity
There is another type of transaction affinity that is not an affinity between
transactions themselves. It is an affinity between a transaction and a particular
CICS region, where the transaction interrogates or changes the properties of that
CICS region—this is called transaction-system affinity.

Transactions with affinity to a particular system, rather than another transaction, are
not eligible for dynamic transaction routing. In general, they are transactions that
use INQUIRE and SET commands, or have some dependency on global user exit
programs, which also have an affinity with a particular CICS region.

For a detailed discussion of transaction affinities, see the CICS Application
Programming Guide.

Detecting Inter-transaction Affinities
To help you detect instances of inter-transaction affinity, CICS supplies an affinity
utility, which is available as a program offering for use with the following releases of
CICS:
v CICS for MVS/ESA Version 4 Release 1
v CICS/ESA Version 3 Release 3
v CICS/ESA Version 3 Release 2.1
v CICS/MVS Version 2 Release 1.2

For all these releases of CICS, the utility is supplied as a separate program
product.

The affinity utility is supplied as part of the CICS base in the CICS Transaction
Server for OS/390.

54 z/OS V1R1.0 Parallel Sysplex Application Migration

The affinity utility is available on the earlier releases so that users of these releases
can plan how to remove, or how to manage, the affinities before migrating to the
workload management environment provided by CICS and MVS.

The CICS affinity utility is designed to help you plan your migration to dynamic
transaction routing by detecting potential causes of inter-transaction affinity. You can
use it to detect programs containing EXEC CICS commands that may cause
transaction affinity.

The affinity utility consists of the following components:

1. The affinity load module scanner

This is a batch utility that scans a load module library to detect programs in the
library that issue EXEC CICS commands that may cause transaction affinity.

Although there is no interface between this component and the others in the
affinity utility, you can use the report to verify, and modify where necessary, the
basic affinity groups generated by the affinity reporter. This is indicated by the
broken line between the scanner report and the basic affinity transaction groups
shown in Figure 12 on page 56.

2. The affinity detector

This detects transaction affinities in an operating CICS region (that is, in real
time) by intercepting the EXEC CICS commands that cause transaction affinity,
and storing details of the affinities in a data space. It consists of two
CICS-supplied transactions and some global user exit programs.

3. The affinity reporter

This is a batch utility that takes the affinity data collected by the affinity detector,
and generates a report for use by system programmers, and sets of basic
affinity transaction groups. A basic affinity transaction group is a set of
transaction identifiers that share a particular resource that creates an
inter-transaction affinity.

4. The affinity group builder

This is a batch utility that takes the basic affinity transaction groups produced by
the affinity reporter, and combines them to produce affinity transaction groups
in a form suitable for batch input to CICSPlex SM. An affinity transaction group
is a set of transaction identifiers that have an inter-transaction affinity with one
another. CICSPlex SM uses the transaction groups to construct affinity tables
for use by its dynamic transaction routing program.

The affinity utility components are illustrated in Figure 12 on page 56.

Chapter 4. Planning the Terminal-Owning Regions 55

The affinity utility detector determines the affinities that apply to a single CICS
region; that is, a single application-owning region or a single terminal/application-
owning combined region. It can be run against production CICS regions, and is also
useful in a test environment, to detect possible affinities introduced by new or
changed application suites or packages.

Notes:

1. The affinity utility cannot guarantee to find every example of inter-transaction
affinity in a given CICS region. It is intended primarily as a migration aid that will
help you to detect affinities. To ensure that you detect as many potential
affinities as possible, you should use the affinity utility against all parts of your
workload, including rarely used transactions and unusual situations.

Planning a Dynamic Transaction Routing Program
This section covers the main points that you must consider when developing your
dynamic transaction routing environment. These are:
v Defining transaction routing tables
v Identifying inter-transaction affinities
v Maintaining the status of application-owning regions
v Monitoring the performance of application-owning regions

Defining Transaction Routing Tables
Transaction routing tables specify which application-owning regions are capable of
processing the transactions.

Figure 12. The CICS Affinity Utility Components

56 z/OS V1R1.0 Parallel Sysplex Application Migration

Your dynamic transaction routing program must be able to identify all the candidate
application-owning regions for each transaction that is passed to it for routing, and
then select the best one to meet the transaction’s service-level agreement (SLA)
objectives.

At the simplest level you must provide some way of mapping the transaction
identifiers (tranids) to the available application-owning regions. You can achieve this
directly by building tables of tranids with supporting SYSIDs. An indirect method is
to group collections of transactions into defined workloads, and then map the
workload names to the application-owning regions.

The tables of workload information can be held on DASD and loaded ready for use
at system initialization.

Identifying Inter-transaction Affinities
Inter-transaction affinities constrain the choice of application-owning region when
making the routing decision.

If any of your transactions have affinities with one another, your dynamic transaction
routing program must be capable of managing this, either through information built
into the routing tables, or in some other way.

Maintaining the Status of Application-Owning Regions
If your dynamic transaction routing program is to maintain effective workload
balancing, it must know the status of the various application-owning regions. It must
also know whether they are available for transaction routing.

Monitoring the Performance of Application-Owning Regions
You must provide some facility for continually monitoring the performance of the
available application-owning regions. Relative performance data for the available
application-owning regions is needed to enable the dynamic transaction routing
program to select the remote region that is best able to meet a transaction’s SLA
objectives.

Using CICSPlex SM
As an alternative to writing your own dynamic transaction routing program and all
the other functions that you need to support it, you can choose to use the workload
management services of CICSPlex SM or another workload management product
that provides equivalent function.

CICSPlex SM provides the facilities you need for defining and controlling CICS
workloads.

You can use CICSPlex SM to control dynamic transaction routing, where the routing
can be based on:
v User, terminal, and affinity attributes associated with the transactions
v The transaction identifiers.

In addition to all the support functions needed for dynamic transaction routing,
CICSPlex SM provides a dynamic transaction routing program that includes:

v The ability to recognize and handle inter-transaction affinities.

v Workload balancing based on either a “join-shortest-queue” algorithm or a
“goal-oriented” algorithm.

v Workload separation, based on the requirements of users, terminals or the
transactions.

Chapter 4. Planning the Terminal-Owning Regions 57

v An ABEND compensation facility, whereby CICSPlex SM attempts to avoid
application-owning regions that have a not-insignificant probability of abending
the transaction—that is, where similar transactions have terminated abnormally in
the recent past.

If necessary you can add more function by customizing the CICSPlex SM dynamic
transaction routing program.

Planning for VTAM Generic Resources
When you have created a single terminal-owning region to handle the flow of work
to the separate application-owning regions, as described under “Splitting CICS into
Separate Terminal- and Application-Owning Regions” on page 50, you need only
one VTAM APPLID for all the applications supported by the application-owning
regions. To ensure your CICSplex can provide continuous availability, the next step
is to create multiple terminal-owning regions, all with links to all the
application-owning regions. However, to enable these terminal-owning regions to
appear as if they are a single entity to the network of CICS users, you should use
the VTAM generic resources function.

Establishing the VTAM generic resource function for your CICSplex involves the
following steps:
v Defining the coupling facility structure
v Defining security authorizations
v Setting trace options
v Defining the generic resource name to CICS
v Migrating to VTAM generic resources.

Note: The VTAM generic resources function and the CICS extended recovery
facility (XRF) are mutually exclusive.

Defining the Coupling Facility Structure
You must set up in the coupling facility policy the required generic resource
structure, ISTGENERIC, using a coupling facility resource management (CFRM)
policy. Plan the size of the generic resource structure according to the number of
CICS specific APPLIDs it has to support, following the instructions given in the
VTAM library. Also see z/OS MVS Setting Up a Sysplex.

Defining Security Authorizations
If you are operating with an external security manager, such as RACF, authorize all
the CICS terminal-owning regions to register with the generic resource name you
plan to use. To authorize CICS terminal-owning regions to access a VTAM generic
resource, you must define a VTAMAPPL profile with the generic resource name as
the VTAMAPPL profile name. Authorize each CICS terminal-owning region with
READ access to the VTAMAPPL profile.

For example, if the generic resource name CICSD### is used by all the
terminal-owning regions shown in Figure 1 on page 18, which have run under the
CICS region userids of CICSDTA1, CICSDTB1, CICSDTC1, and CICSDTD1, you
can define the profile and authorizations as follows:
RDEFINE VTAMAPPL CICSD### UACC(NONE)

PERMIT CICSD### CLASS(VTAMAPPL) ID(CICSDTA1, CICSDTB1, CICSDTC1, CICSDTD1)
ACCESS(READ)

58 z/OS V1R1.0 Parallel Sysplex Application Migration

Setting Trace Options
Review your VTAM trace options, and consider whether you also want to trace
coupling facility events. See the VTAM Network Implementation Guide , SC31-6494,
and the VTAM Resource Definition Reference , SC31-6498 for information about
using VTAM trace.

Defining the Generic Resource Name to CICS
Define the generic resource name (CICSD### in our example) using the GRNAME
system initialization parameter, to all the terminal-owning regions that are members
of that generic resources name. This enables a CICS terminal-owning region to
register its APPLID as a member of the VTAM generic resource specified on the
GRNAME system initialization parameter.

When any of the terminal-owning regions are next started, the terminal users can
log on either by the generic resource name or by the specific APPLID. However,
LU6.2 devices must log on using the generic resource name.

Do not specify this parameter to any other CICS regions, such as
application-owning regions, file-owning regions, and so on. You must also ensure
that the XRF parameter specifies XRF=NO.

Migrating to VTAM Generic Resources
When planning your migration to VTAM generic resources, you should bear in mind
the following rules governing CICS use of the VTAM generic resources function:

v Generic resource names must be unique in the network

v A generic resource name cannot be the same as an APPLID in the network

v A CICS region can have only one generic resource name and only one APPLID

Also, you must have an APPN environment within the sysplex (see “VTAM Generic
Resources” on page 13).

There are some restrictions on the use of generic resources by certain types of
devices:

v Devices using message protection cannot logon using the generic resource
name. They must use the APPLID and therefore cannot take advantage of
session balancing

v LU6 connections must logon using the generic resource name. They cannot
logon using an APPLID if the APPLID is a member of a generic resource name.

v If an LU6.2 connection is bound at synclevel 2 to a specific member of a generic
resource name, it is reconnected to that specific APPLID every time it is re-bound
(the VTAM generic resources function ensures that this requirement is met). If,
for some reason, the specific APPLID is not available, connection to the generic
resource as a whole is denied.

v If an LU6.1 connection is bound to a specific member of a generic resource, it is
reconnected to that specific APPLID every time it is re-bound (the VTAM generic
resources function ensures that this requirement is met). If for some reason the
APPLID is not available, connection to the generic resource as a whole is
denied.

In addition, certain configurations are prohibited by the following restrictions:

v You cannot route transactions from a member of a generic resource across an
ISC connection.

Chapter 4. Planning the Terminal-Owning Regions 59

v A remote LU6 partner cannot be accessed from more than one member of a
generic resource name.

v You cannot use ISC to connect members of the same generic resource name. If
a region (for example, an AOR) must connect to more than one member of a
generic resource, it must connect to them using MRO: it cannot use ISC.

Note that, in this context, a terminal-owning region is any CICS region that owns
terminals and is a candidate to be a member of the generic resource name. Thus a
combined TOR/AOR is considered to be a terminal-owning region for the purposes
of this discussion

If you have no LU6 connections to your terminal-owning region you could choose a
new name for the generic resources and retain your old APPLID. Non-LU6
terminals can logon by either APPLID or generic resource name, hence they would
not be affected by the introduction of the generic resource name. You could then
gradually migrate the terminals to using the generic resource name.

However, if you have LU6 terminals in your network you will probably want to
migrate to generic resources without requiring all your LU6 network partners to
change their logon procedures. A solution to this is to use the APPLID of your
existing terminal-owning region as the new generic resource name. Since this
requires you to choose a new APPLID, it is also necessary to change the
CONNECTION definitions of MRO-connected application-owning regions and RACF
profiles that specify the old APPLID. Note, however, that you do not need to change
the APPL profile to which the users are authorized—CICS passes the GRNAME to
RACF as the APPL name during signon validation, and the old APPLID is now the
GRNAME.

The recommended migration steps are:-

v Configure your CICSplex with a single terminal-owning region

v Set the generic resource name to be the current APPLID of that terminal-owning
region

v Change the current APPLID to a new value (consider using the recommended
naming convention)

v Change CONNECTION definitions in MRO partners to use the new APPLID for
the terminal-owning region (again, this is a suitable time to change to an
appropriate naming convention).

v Change RACF profiles that specify the old APPLID.

v Restart the CICSplex.

At this point:

– Non-LU6 terminals can logon using the old name (without being aware that
they are now using VTAM generic resources). They will, of course, be
connected to the same TOR as before because there is only one in the
generic resources set

– LU6 connections logon using the old name (thereby conforming to the rule
that they must connect by generic resource name)

– Devices using message protection must change to use the new APPLID
before the existing terminal-owning region is cloned. Up to that point they are
rebound to the only TOR.

v Install new cloned terminal-owning regions with the same generic resource name
and the same connectivity to the set of AORs

v Autoinstalled non-LU6 terminals now start to exploit session balancing

60 z/OS V1R1.0 Parallel Sysplex Application Migration

v Autoinstalled LU6.2 synclevel 1 terminals start to exploit session balancing

v Existing LU6.1 and LU6.2 synclevel 2 terminals continue to be connected to the
original terminal-owning region (by generic resource name)

v Special considerations apply to non-autoinstalled terminals and LU6 connections
used for outbound requests.

Special Considerations for Non-Autoinstalled Terminals and
Connections
If an LU is predefined to a specific terminal-owning region, and the LU initiates the
connection, the generic resources function cannot be allowed to choose any
terminal-owning region in the generic resources. The connection must be made to
the terminal-owning region that has the definition. This requirement means that you
must install the VTAM generic resources resolution exit program, ISTEXCGR, to
enforce selection of the correct APPLID (for the terminal-owning region).

Note that this is not necessary if the connection is always initiated by the
terminal-owning region.

Special Considerations for Outbound LU6 Connections
As already stated, a remote LU6 partner cannot be accessed from more than one
member of a generic resources.

A problem may arise when the LU6 partner is to be used as the target for function
shipping or distributed transaction processing (DTP) requests from a
terminal-owning region.

There is no problem if application-owning regions function-ship, or use DTP, or even
transaction route to a remote LU. The restriction does not apply because the
application-owning regions are not members of a generic resource. However, if a
terminal-owning region in a generic resource needs to function ship or participate in
DTP to a remote LU, the restriction implies that no other terminal-owning region in
the generic resources can access the remote LU directly. The CICSplex must be
configured so that all access to the remote LU is via that terminal-owning region.
Thus other CICS regions in the CICSplex would need to daisy-chain their requests
to that terminal-owning region via MRO links.

In addition, as previously explained, if it is possible that the remote LU initiates the
connection, it is necessary to ensure that the connection is made to the correct
terminal-owning region. Since the remote LU must use the generic resource name,
you must provide a VTAM generic resources resolution exit program to select the
APPLID of the correct terminal-owning region for that remote LU.

One option is to choose one terminal-owning region to act as a network hub for
connections to all LU6 partners that are targets of outbound requests. This hub
owns all such connections, which are almost certainly predefined, because they are
referenced by existing applications or resource definitions in the CICSplex. All
applications running in application-owning regions or other terminal-owning regions
must daisy-chain their requests for services from the remote LUs through the hub.

The network hub can be a member of the generic resource name, in which case it
is necessary to install a VTAM generic resources resolution exit program to direct
incoming binds from the LU6 partners to the network hub terminal-owning region.

A simpler option is to have a network hub that is not a member of the generic
resource name. This avoids the need for the VTAM generic resources resolution
exit program, but requires that all the predefined LU6 partners that may initiate

Chapter 4. Planning the Terminal-Owning Regions 61

connections to the CICSplex logon using the APPLID of the network hub
terminal-owning region. This is the recommended option, unless it is not possible to
change the logon name used by existing LU6 partners.

Implementing VTAM Persistent LU-LU Sessions
To enable this support in each terminal-owning region, specify a time interval on the
CICS system initialization parameter, PSDINT, and ensure that the XRF parameter
specifies XRF=NO. You must also review the RECOVOPTION and RECOVNOTIFY
attributes on your TYPETERM definitions, and set appropriate options for the
actions you want CICS to take when recovering sessions. For example, you might
want to run automatically your sign-on transaction to prompt users to sign on again.

Note: Before implementing VTAM persistent session support in your CICS
terminal-owning regions, you should weigh up the relative merits of both
persistent sessions and VTAM generic resources.

With multiple terminal-owning regions in your CICSplex, you may consider that
VTAM generic resources are essential in order to represent the CICSplex as a
single entity to the terminal network. Also, in the event of a terminal-owning region
failing, users of a failed terminal-owning region can quickly logon again to the
generic resources name, and be connected to another terminal-owning region.

On the other hand, if you implement persistent sessions, VTAM retains sessions
either until the failed terminal-owning region is restarted and the session recovered,
or the timeout interval expires, or the user breaks the session. This avoids users
having to logon, although they do have to sign on again and restart any
transactions that were in-flight at the time of the failure.

If you are using both VTAM generic resources and VTAM persistent sessions and a
terminal-owning region fails, VTAM retains the terminal sessions in a recovery
pending state until the TOR is restarted and recovers its sessions. During this time,
the user perception is that CICS is “hanging”, and whatever is on the screen at the
time of failure remains until persistent sessions recovery is complete. In some
circumstances users may find it quicker to break the session and logon to another
terminal-owning region using the generic resources function.

Cloning the CICS Terminal-Owning Regions
In the first stage of splitting the combined TOR/AORs, as shown in Figure 10 on
page 51, we recommended creating a single terminal-owning region with
connections to each of the application-owning regions. The next stage is to create
multiple terminal-owning regions, as shown in Figure 13 on page 63.

62 z/OS V1R1.0 Parallel Sysplex Application Migration

For the purposes of illustration, we have shown both terminal-owning regions
residing in the same MVS image, but clearly in a sysplex environment it makes
more sense to start each terminal-owning region in a separate MVS. Initially you
can test TOR2 in the same MVS as TOR1. Later you can migrate it to another
MVS, ideally when cloning the application-owning regions across the sysplex on
other MVS images. The steps are as follows:

1. Create another terminal-owning region
Set up a new CICS terminal-owning region with a new VTAM APPL name. This
region should have all the unique CICS system data sets required for a new
CICS region, but should share the same CSD as the other terminal-owning
region and the application-owning regions.

Note: If you have predefined terminals, you may need to modify your CSD
groups to ensure they are installed in the appropriate region. Predefined
terminal definitions are not necessarily capable of being shared, and may
have to be installed in one terminal-owning region only. For example,
you must plan for predefined terminal that are defined with
AUTOCONNECT(YES), because these must be installed in one region
only.

Also, the autoinstall user-replaceable module in each terminal-owning
region must be able to generate termids that are unique across the
CICSplex.

2. Use the same startup group list as the first terminal-owning region
The second and subsequent terminal-owning regions, to be true clones, must
be virtually identical, and have equal access to the application-owning regions.
This means they must have the same CONNECTION and SESSIONS
definitions. They must also have the transaction-routing capability. The only

Application AApplication A Application BApplication B Application CApplication C

Figure 13. CICS Region Configurations Before and After Splitting into Separate Terminal-Owning and
Application-Owning Regions

Chapter 4. Planning the Terminal-Owning Regions 63

attributes of the clone terminal-owning regions that are different are their
identifiers: APPLIDs, SYSIDNTs, and MNSUBSYS.

See “Chapter 14. Planning the Resource Definitions” on page 121 for details of
how CSD groups should be defined and named for common use.

3. Enable the VTAM generic resources function
Start VTAM and ensure the generic resource is the only CICS VTAM application
available for all users of Application A, Application B, and Application C.

4. Test the multiple terminal-owning region configuration
When you’ve completed the resource definitions, bring up all five regions and
test that:
1. The MRO connections work
2. The transactions work with dynamic transaction routing.

64 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 5. Planning the Application-Owning Regions

This chapter discusses some of the factors that you should take into account when
planning the application-owning regions. You will need to be clear about your prime
objectives. For most users, these will include:

v Achieving the optimum level of central processor (CP) utilization for each CPC

v Achieving the required throughput in terms of the number of transactions per
hour, per shift, or per day

v Achieving the required level of availability

v Special considerations for START commands in a dynamic transaction routing
environment.

Achieving the Optimum Level of Processor Utilization
There are two main factors you need to consider when planning to optimize the use
of central processor resources.

1. The effect of workload balancing on capacity planning

2. The limited way in which a single CICS region exploits the multiprocessor
capacity of an n-way CPC.

The Effect of Workload Balancing on Capacity Planning
Without the benefits of dynamic transaction routing and workload management
facilities, you would probably have to aim for a much lower level of CP utilization, to
ensure that you had sufficient capacity to allow for peaks in workload.

In a sysplex environment, using dynamic transaction routing with full workload
balancing support, you don’t need to restrict workload to a particular level of
utilization on any given CPC in order to allow for peak loads. With the benefit of
workload balancing, any terminal-owning region within the sysplex can route work
away from busy application-owning regions to those that are best able to handle the
work.

This means that you should be able to run each CPC in a System/390
microprocessor cluster at high levels of utilization. However, you should include
some additional capacity to provide cover in the event of a hardware failure. This
reflects one of the strengths of the sysplex—with cloned systems, you would need
the capacity of only one system to act as standby for all the others in the sysplex.

CICS and Multiprocessor Capacity of an n-way CPC
In general, CICS runs user application programs under a single TCB—known as the
CICS quasi-reentrant TCB. (CICS also uses other TCBs; for example, it uses the
resource-owning TCB, for opening and closing data sets and for loading programs.
However, the average time spent on these activities in an application-owning region
for each transaction is very small and therefore can be discounted.)

For a single CICS region you can choose to exploit the multiprocessor capacity of a
CPC by subtasking its VSAM activity. This is done by using the (optional) CICS
concurrent TCB, available when you specify the SUBTSKS system initialization
parameter. This means that a single CICS region running transactions that issue
VSAM file requests can utilize up to two CPs concurrently. The degree of

© Copyright IBM Corp. 1994, 2001 65

concurrent processing depends on the proportion of VSAM activity in relation to the
rest of the transaction, but it typically means that a single CICS region could “drive”
up to one-and-a-half CPs.

See the CICS Performance Guide for details of CICS subtasking using the
concurrent TCB.

Allowing for Other Work
For ease of illustration in the various examples given in this book, the target
configuration that is shown in Figure 1 on page 18 shows only 3 explicitly named
application-owning regions in each of the MVS images assigned for CICS
transactions. To achieve full utilization of the CPCs in our System/390
microprocessor cluster we might have to allocate more application-owning regions
(shown by DAAn through DADn in the configuration diagram) but this would depend
on the nature of the transactions. For example, when planning this aspect of the
migration you should take into account the work done by:

v The VTAM address space

v Workload balancing and transaction routing from the terminal-owning regions to
the application-owning regions

v Processing the DL/I, DB2, and VSAM RLS requests issued by CICS transactions
in the sysplex data sharing environment

v Processing any CICS file control requests that are function-shipped to a
file-owning region (if there is one)

v Processing any temporary storage and transient data requests that are passed to
a TS server or function-shipped to a queue-owning region (if there is one)

v Any additional activity in the CPC, such as that required for any IMS batch
regions (possibly converted from CICS shared database regions).

It is not necessary to calculate precisely the number of CPs that the
application-owning regions could drive. It is sufficient to derive a rough estimate and
err on the high side when calculating the number of application-owning regions
required to fully utilize the number of CPs in the CPC. There is no significant
performance impact from over-configuring the number of AOR.s.

Figure 14. A Partial View of the CICSplex Configuration Showing some of the
Application-Owning Regions

66 z/OS V1R1.0 Parallel Sysplex Application Migration

The Ratio of AORs to TORs
Assuming that a terminal-owning region performs only transaction routing functions,
which are only a fraction of the work done by an application-owning region, one
terminal-owning region should be able to serve between 10 and 20
application-owning regions. For example, if the dynamic transaction routing path
length in a terminal-owning region is about 60 000 instructions, and the average
size of your transactions is about 1 million instructions, a single terminal-owning
region could drive about 16 application-owning regions. However, to assign only
one terminal-owning region in our CICSplex would create a single point of failure,
which must be avoided to ensure high availability to end users.

As a general rule, we recommend that you install one terminal-owning region in
each MVS image, and as many application-owning regions as needed to fully utilize
all the CPs available to that MVS image. For convenience and ease of illustration,
we have shown only 3 explicitly named application-owning regions in our target
configuration in Figure 1 on page 18.

Achieving the Required Transaction Throughput
To determine whether you have enough application-owning regions to meet service
level agreements, you need to estimate the capacity of the planned
application-owning region configuration needed for the anticipated workload. If the
number of application-owning regions is too low to handle the anticipated workload,
you will need to allocate more. If you are unable to allocate more
application-owning regions in the existing MVS images, because the CPCs are
already at their optimum processor utilization level, you will need more MVS images
to support the additional application-owning regions.

Estimating the Throughput Rate
For the purpose of this discussion, let us assume that:

v Each individual CPC running our target CICSplex configuration can process work
at the rate of 50 million instructions per second (50 mips).

v The optimum utilization aimed for is almost 100%, and half of this is for the three
named application-owning regions.

v The average transaction path length is about 1 million instructions in the
application region.

These assumptions would indicate that the 3 named application-owning regions we
have illustrated in each MVS in our target configuration can process a maximum of
25 transactions per second, based on the following calculation:
((MIPS ÷ 2) ÷ path length (in millions)) = ((50 ÷ 2) ÷ 1) = 25

In a CICSplex in the sysplex environment it should be possible to drive the 3
named application-owning regions at this rate more or less continuously. See
Table 3 for the DL/I transaction throughput across the CICSplex using the DL/I
application-owning regions.

Table 3. Potential Throughput at 25 Transactions per Second per CPC
Number of Application-Owning Regions Transactions In One

Hour
Transactions In

Twelve Hours
Three (in one MVS image) 90 000 1 080 000
Nine (in 3 MVS images) 270 000 3 240 000

Chapter 5. Planning the Application-Owning Regions 67

If the anticipated number of transactions is greater or less than the numbers shown
in Table 3 on page 67 we would have to change the number of application-owning
regions accordingly. Also, if the peak load is ever greater than 270 000 per hour, we
would also have either to increase the resources to match, or to allow response
times to rise.

Achieving the Required Level of Availability
When you have decided on the number of application-owning regions you need,
how should these be allocated across the sysplex? Planning the allocation of the
application-owning regions across the sysplex is essential to ensure the right level
of availability. Before you can decide how to allocate the regions, however, you
have to decide the extent to which you are going to clone them, and which regions
should be cloned.

Clones are regions that are identical in every respect except for identifiers such as
SYSIDNTs, and APPLIDs; therefore each application-owning region is capable of
running the same transaction workload.

Should all the application-owning regions be the same, or should they be grouped
in cloned subsets? You should consider the following when planning your cloning
strategy:

v Cloning means creating a number of identical CICS regions, and in this case a
number of identical application-owning regions to support workload balancing
across the CICSplex.

v Creating multiple application-owning regions can increase CICS availability by
reducing or minimizing the impact of a CICS failure. If one region fails, users
whose transactions are running in another region are unaffected.

v Availability is further increased if more than one region is capable of running the
same transactions.

v An increase in throughput can be achieved by cloning application-owning
regions, and spreading the workload across the cloned application-owning
regions, which themselves can be spread across the sysplex.

v Cloning application-owning regions in different MVS images protects your
applications against an MVS failure. If an MVS image fails, clones of the
application-owning regions in the failed MVS, which are running in another MVS,
can continue processing the same transactions.

Although you might want to separate workloads to some extent, you should
nevertheless still consider making all the application-owning regions the same. This
is because it is easier to create identical CICS regions that are all capable of
handling the same workload, rather than tailoring each region to suit a particular
workload. With identical regions you control which transactions are routed to the
application-owning regions through the dynamic transaction routing mechanism.
This can be illustrated by the following scenario, which is illustrated in Figure 15 on
page 69.

v Assume a configuration of 12 DL/I application-owning regions running in 3 MVS
images, and designed to handle 3 main CICS-DL/I applications, identified as
Appl_A, Appl_B, and Appl_C. (This is similar to our target configuration shown in
Figure 1 on page 18, but with four application-owning regions instead of three for
the purpose of this example.)

v Appl_C must always run in different application-owning regions from Appl_A and
Appl_B, but Appl_A and Appl_B can run together in the same CICS regions.

68 z/OS V1R1.0 Parallel Sysplex Application Migration

v The ratio of transaction workload for the 3 applications is roughly 2:2:1 for
Appl_A, Appl_B, and Appl_C respectively.

v All the application-owning regions are identical, except for their APPLIDs and
SYSIDNTs, which means they all have the same resource definitions installed,
and are capable of running all three applications.

v Although the 12 application-owning regions are defined identically, the dynamic
transaction routing program is designed to control which transactions they
receive. This ensures that 9 of them never receive any Appl_C transactions, and
3 of them never receive any Appl_A or Appl_B transactions.

Figure 15 shows which application-owning regions are allowed to process the 3
applications.

Alternatively, if we used the target configuration as shown in Figure 1 on page 18
with only 9 application-owning regions, there would only be 7 application-owning
regions to handle applications Appl_A and Appl_B, and only 2 for Appl_C. This
would have the disadvantages that:

v A sudden surge of work for Appl_C would be constrained by the capacity of only
2 application-owning regions.

v A failure of any MVS image nearly halves the processing capacity available to
either Appl_A and Appl_B or to Appl_C.

START Commands In a Dynamic Transaction Routing Environment
When planning your CICSplex configuration for a dynamic transaction routing
environment, you need to give special consideration to the use of EXEC CICS
START commands.

Appl_A
Appl_B

Appl_A
Appl_B

Appl_A
Appl_B

Appl_A
Appl_B

Appl_A
Appl_B

Appl_A
Appl_B

Appl_A
Appl_B

Appl_A
Appl_B

Appl_A
Appl_B

Appl_CAppl_C Appl_C

Figure 15. Plan Showing Which Applications the Regions Can Process

Chapter 5. Planning the Application-Owning Regions 69

Start Commands that Do Not Specify TERMID
In the ideal case, transactions started without an associated terminal could run on
any application-owning region. In this case, you define the transaction as a local
transaction in all the application-owning regions. The started transaction adds to the
load in its application-owning region but, on the assumption that the transactions
that are issuing the START commands are evenly balanced across the
application-owning regions, the started transactions will also be evenly balanced.

In some existing configurations the workload is separated into single-application
application-owning regions, using static routing. However, over time, extensions to
one application may require that it has access to transactions belonging to another
application. A common way to achieve this is to use function-shipped START
requests. The function shipping can be controlled by defining the transactions as
remote, or by using the SYSID option on the START command.

To continue developing applications in this way undermines the simplicity of the
cloning approach we are advocating. A better approach is to consider combining the
applications into a multi-application AOR, and then clone the multi-application AOR.
If one of the reasons for separating the applications is to prevent them overwriting
each others storage, you can achieve the same protection using transaction
isolation.

If it is possible to adopt this approach, you eliminate the need for connections
between application-owning regions, and greatly simplify systems management as
well as application development.

START Commands that Specify TERMID
START commands that specify TERMID can be split into two categories: those that
specify the principal facility (EIBTRMID) as the target terminal, and those that do
not.

When TERMID specifies the principal facility: In this case, it is quite likely that
you could adopt an alternative application design using the EXEC CICS RETURN
command, with the TRANSID and IMMEDIATE options. It is not necessary to make
this change, but this approach has great benefits compared with using EXEC CICS
START with TERMID(EIBTRMID). It performs much better, it ensures the ordering
of transactions, and it allows the dynamic transaction routing algorithm to make a
new decision about where the second transaction should run. These benefits can
justify the cost of changing the application.

In some existing configurations the workload is separated into single-application
AORs, using static routing. However, over time, extensions to one application may
require that it has access to transactions belonging to another application. A
common way to achieve this is to use function-shipped START requests, specifying
the transaction’s principal facility as the target terminal. The function shipping can
be controlled by defining the transactions as remote in the originating
application-owning region, or by using the SYSID option on the START command.

A complication arises if the START command is function shipped to an
application-owning region where the terminal (EIBTRMID) is unknown, probably
because it was autoinstalled and the definition has not been shipped to the target
application-owning region.

There are two ways you can resolve this problem:

70 z/OS V1R1.0 Parallel Sysplex Application Migration

1. If you combine the application-owning regions it is not necessary to function
ship the START command, in which case the search for the target terminal will
generally succeed in finding a definition in the invoking application-owning
region. (This assumes the START command does not have a delay that allows
the shipped terminal to be deleted.)

2. If you cannot combine the application-owning regions for some reason, you can
change the application to use the EXEC CICS RETURN command, with the
TRANSID and IMMEDIATE options. This causes the next transaction to be
routed, via the terminal-owning region to the target application-owning region by
existing mechanisms in the TOR (that is, by static remote transaction definitions
or by a workload separation algorithm in the dynamic transaction routing
program).

When TERMID does not specify the principal facility: In the case where the
target terminal is not the principal facility of the transaction issuing the START
command, the situation is more complicated. The solution here depends on how the
application determines the name of the target terminal. If it is a printer, it may well
be predefined. If it is autoinstalled, a problem can arise if the terminal definition has
not been shipped to the application-owning region. However, your application has to
derive its name somehow, and the method should also provide a mechanism for a
terminal not-found global user exit program (at exits XALTENF and XICTENF) to
determine which terminal-owning region actually owns the target terminal.

Chapter 5. Planning the Application-Owning Regions 71

72 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 6. Planning for VSAM Record-Level Sharing

This chapter discusses planning for migration from a CICS configuration that uses
one or more CICS file-owning regions (FORs) to share VSAM files, to a
configuration that uses VSAM record-level sharing (RLS). It covers the following
topics:
v Concepts and use of RLS
v Preparing for RLS
v Planning migration and coexistence.

Concepts and use of RLS
RLS is a mode of opening and accessing VSAM data sets, supported by DFSMS
Version 1 Release 3 and by CICS. The RLS concept, with SMSVSAM servers
replacing CICS file-owning regions, is illustrated in Figure 16.

RLS enables VSAM data to be shared, with full update capability, between many
applications running in many CICS regions across the sysplex.

Figure 16. Conceptual View of Parallel Sysplex with an SMSVSAM Server in Each MVS Image

© Copyright IBM Corp. 1994, 2001 73

With RLS, CICS regions that share VSAM data sets can reside in one or more MVS
images within the sysplex.

The SMSVSAM server, which is generally initialized automatically during an MVS
IPL, uses the coupling facility for its cache structures and lock structures.

CICS can access a VSAM file in three different modes. These are non-shared
resources (NSR) mode, local shared resources (LSR) mode, or record-level sharing
(RLS) mode. (CICS does not support VSAM global shared resources (GSR) access
mode.) The mode of access is not a property of the data set itself—it is a property
of the way that the data set is opened. For example, a given data set can be
opened in NSR mode at one time, and RLS mode at another.

Coupling Facility Requirements for VSAM Record-level Sharing
VSAM record-level sharing requires a coupling facility running coupling facility
control code (CFCC) at CFLEVEL=2.

For information about the coupling facility and CFLEVEL, see PR/SM Planning
Guide .

Data Set Eligibility
Any VSAM data set supported and managed by CICS file control is eligible to be
opened in RLS mode, including the CICS system definition (CSD) data set, subject
to the restrictions described under “Restrictions for Data Sets Defined with IMBED”.
This includes data sets that have an associated user-maintained shared data table,
but not CICS-maintained shared data tables.

The CICS auxiliary temporary storage data sets (DFHAUXT and DFHBUXT) and
the CICS transient data intrapartition data set (DFHINTRA) are not eligible for
RLS-mode access.

Restrictions for Data Sets Defined with IMBED
You cannot specify RLS access for data sets defined with the IMBED option. If you
have data sets that are defined with IMBED, and you want to use them in RLS
access mode:
v Redefine the data sets without the IMBED option
v Copy the the old data set to the new using the IDCAMS REPRO function.

You can then use the new data set in RLS mode.

When reviewing your data sets for RLS eligibility, also reconsider the use of the
REPLICATE option. Although REPLICATE is supported by RLS, it does not provide
any performance benefit, and can be omitted without penalty. Not using replication
should save a little space on DASD.

Choosing Between RLS-Mode and Non-RLS Mode
You should specify RLSACCESS(YES) on resource definitions only when you need
to share the referenced data set between more than one CICS region.

The following are some things to consider when you are deciding whether data sets
are good candidates for RLS access:

v If you have data sets that are used within a single MVS image, and whose
access characteristics make them suitable for use as shared data tables, CICS

74 z/OS V1R1.0 Parallel Sysplex Application Migration

shared data table support will give you the greatest benefit. See the CICS
Shared Data Tables Guide for more information.

v If you have data sets that are referenced by file definitions in only one CICS
region, continue using those data sets in non-RLS access mode.

v If you have data sets accessed through an FOR to which you function ship
requests from multiple AORs in the same sysplex, switch to RLS access mode,
making the FOR redundant.

v If you are moving to a parallel environment, and want to create a number of
clones of an AOR that owns its VSAM locally (an AOR/FOR), switch to RLS
access mode to enable the cloned AORs to share the data without the need for
an FOR.

Restricting Switching Between RLS Mode and Non-RLS Mode Access
VSAM ensures that a sphere cannot be accessed simultaneously in RLS mode and
any other VSAM mode. A sphere is a collection of all the component data sets
associated with a given VSAM base data set—the base, index, alternate indexes,
and alternate index paths. The first file-open request issued within the sysplex
determines the type of access that is allowed until all files for the sphere are closed.
Thus, if CICS regions have files open in RLS mode against a data set, batch jobs
cannot open the data set in non-RLS mode until the CICS RLS-mode files are
closed.

General Rule About Switching Opening Modes
Except for read-only operations, as a general rule do not switch between RLS and
non-RLS modes within CICS. After a data set is accessed for update in RLS mode
by CICS, it should always be accessed in RLS mode by CICS. If you need to
switch to non-RLS mode for batch processing, you should use the CICS QUIESCE
function to take the data set offline from all CICS regions. When you issue the
QUIESCE command in one CICS region, it is propagated throughout the CICSplex,
causing all CICS regions to close their RLS ACBs. When the quiesce operation is
completed by all CICS regions, you can run the non-RLS batch jobs (unless there
are retained locks; see “Resolving Retained Locks” on page 76).

Take backups of data set copies for recovery purposes before and after a batch run
as you would normally, regardless of whether you are switching from RLS to
non-RLS access mode.

Switching Modes Exception for Read-Only Operations
There is an exception to the general rule about not switching between RLS and
non-RLS within CICS. You can can switch to non-RLS access on a data set that is
normally opened in RLS mode provided access is restricted to read-only operations.
You might want to do this, for example, to allow continued access for read-only
transactions while the data set is being updated by a batch job. CICS and VSAM
permit quiesced data sets to be opened in non-RLS mode, but you must ensure
that CICS transactions do not update a data set that is being updated concurrently
by a batch program.

Recommended Procedure
The recommended procedure for providing CICS read access to a recoverable data
set while it it is being updated by a batch job is:

1. Resolve retained locks (see “Resolving Retained Locks” on page 76)

2. Quiesce the data sets.

Chapter 6. Planning for VSAM Record-Level Sharing 75

3. Redefine the files as non-RLS and read-only mode in all relevant CICS regions.
You can do this using the CEMT, or EXEC CICS, SET FILE command.

Note: If your file definitions specify LSRPOOLIDs that are built dynamically by
CICS, consider using the RLSTOLSR system initialization parameter.

4. Open the files in non-RLS read-only mode in CICS.

5. Concurrently, run batch non-RLS.

6. When batch work is finished:

a. Close the read-only non-RLS mode files in CICS.

b. Re-define the files as RLS mode and with update operations. You can do
this using the CEMT, or EXEC CICS, SET FILE command.

c. Unquiesce the data sets.

d. Open the files in CICS, if not using open on first reference.

e. Resume normal running.

Resolving Retained Locks
VSAM ensures that quiesced data sets can be opened only in non-RLS mode, but
the quiesce operation does not guarantee that quiesced data sets can be opened
by batch programs. If VSAM is holding any retained locks for a data set that is
required by a batch program, the data set open request fails. CICS provides
support to help you to resolve retained locks, in the form of SPI commands, and a
suite of sample application programs that uses these commands.

You should set up your own procedures for dealing with retained locks, based on
the procedures described in the CICS Recovery and Restart Guide.

Preparing for RLS
In preparation for RLS, check whether you need to make any application program
changes. In particular, review whether you want to use read integrity options, and
check for the possible effect of the LOCKED exception condition.

Read Integrity
You can specify read integrity options for READ-only requests, either on the READ
command or on the file control resource definition.

You are recommended to specify repeatable and consistent READs in your
applications only when they cannot tolerate “dirty” data. This is to avoid the
potential locking overhead from the extra locking needed to ensure read integrity.

Before introducing read integrity, review your applications to see if read integrity is
likely to introduce new deadlocks. See the CICS Application Programming Guide for
information about the increased risk of deadlocks, particularly when defining read
integrity on file resource definitions.

The LOCKED Exception Condition
Check your application programs to ensure that they can handle the retained lock
exception condition (LOCKED). The default CICS action for applications that do not
handle the LOCKED exception condition, and do not specify HANDLE CONDITION
ERROR, is to abend the transaction with an AEX8 abend code. Check existing
applications to ensure that they are correctly coded to deal with unexpected

76 z/OS V1R1.0 Parallel Sysplex Application Migration

conditions. This should be of concern only in those application programs that
specify NOHANDLE, or imply NOHANDLE by means of the RESP options.

Application programs that use NOHANDLE or RESP to deal with exception
conditions in their own way must ensure that they are coded to handle unknown
conditions, otherwise errors could occur. For example, if an existing application
program contained the following statements, a LOCKED condition would be handled
the same as any other known, or unknown, exception conditions that might be
returned by CICS:

EXEC CICS READ UPDATE
INTO(CUSTREC-LAYOUT)
FILE(CUST-FILE-NAME)
LENGTH(READ-LENGTH)
RIDFLD(CUSTOMER-NUMBER)
RESP(EXEC-RESPONSE)

END-EXEC.

EVALUATE EXEC-RESPONSE
WHEN DFHRESP(NORMAL)

PERFORM NORMAL-PROCESS
WHEN OTHER

PERFORM ERROR-RESPONSE
END-EVALUATE.

On the other hand, if an application program uses the EVALUATE clause to test for
each of a list of known exception conditions, and the WHEN OTHER statement
assumes a normal response, the results of a LOCKED condition are unpredictable.

Review suspect application programs and modify them as necessary.

See the CICS Application Programming Reference for information about the
LOCKED exception condition that can occur on file control commands.

Defining the Coupling Facility Structures
You must define the structures required by VSAM in the coupling facility before you
can use RLS. These are:
v Cache structures and cache sets
v Lock structure
v Structures for use by the CICS log manager

Defining the Cache Structures and Cache Sets
When you are converting data sets to RLS access mode, define the required cache
structures in the coupling facility. Define the size of each coupling facility cache
structure to provide approximately the same amount of space as that provided by
the LSR pools and hiperspace used by the data sets that reference the cache
structure. The structure should be at least large enough so that the coupling facility
cache directory contains an entry for each of the RLS local buffers across all
systems.

If you are using RLS to replace more than one file-owning region, the size of the
cache should be at least as large as the sum of all the LSR pools being replaced.

You can have more than one cache structure defined within a cache set. This is of
benefit because it can allow data sets to be reassigned to another cache in the
event of a failure of the original cache.

For information about defining cache structures and cache sets, see the z/OS
DFSMSdfp Storage Administration Reference, SC26-7402.

Chapter 6. Planning for VSAM Record-Level Sharing 77

Defining the Lock Structure
To use VSAM RLS, you must define a single, non-volatile, master coupling facility
lock structure. This lock structure is used to maintain the record-level locks for all
data sets accessed by CICS in RLS mode. You should ensure that the coupling
facility lock structure is accessible from all MVS images in the sysplex that need to
support VSAM RLS.

The coupling facility master lock structure is named IGWLOCK00. Use the
cross-system extended services (XES) coupling definition process to define it. See
the z/OS MVS Setting Up a Sysplex for general information about XES.

To define the size of the coupling facility master lock structure, use the formula
provided by VSAM in the z/OS DFSMSdfp Storage Administration Reference.

Defining Structures for Use by the CICS Log Manager
When you move to an RLS environment from one in which multiple AORs have
been accessing data sets in an FOR, the logging activity of the FOR is taken over
by the AORs. The coupling facility structure size required by each AOR increases
as a consequence of this. See the CICS Transaction Server for OS/390 Installation
Guide for details on how to calculate the increased structure space required by an
AOR on such a move to RLS.

Defining the Sharing Control Data Sets
Define at least two active sharing control data sets and one spare sharing control
data set.

See the CICS Transaction Server for OS/390 Installation Guide for information
about defining these data sets.

Defining SMS Storage Classes
All data sets accessed in RLS mode must reside on SMS managed storage. Define
the appropriate SMS storage classes for the data sets that you want to access in
RLS mode.

For information about defining storage classes for VSAM RLS, see the z/OS
DFSMSdfp Storage Administration Reference.

Defining IGDSMSxx Parameters in SYS1.PARMLIB
Review the IGDSMSxx member on SYS1.PARMLIB and set appropriate values for
the DEADLOCK_DETECTION, SMF_TIME, CF_TIME, RLS_INIT, and
RLS_MAX_POOL_SIZE parameters.

For information about IGDSMSxx, see the z/OS DFSMSdfp Storage Administration
Reference, SC26-7402.

Defining Deadlock Time Intervals
For files opened in RLS mode, VSAM, and not CICS, is responsible for detecting
deadlocks and timeout conditions, and for providing associated diagnostic
information.

v VSAM detects and resolves deadlocks between RLS requests.

A VSAM-detected deadlock causes CICS to abend the transaction with an AFCW
abend code.

78 z/OS V1R1.0 Parallel Sysplex Application Migration

v VSAM detects timeouts that may have been caused by deadlocks between RLS
and other resource managers, or caused by a single transaction holding a lock
for an excessive amount of time.

For its timeout mechanism, VSAM uses a timeout interval value passed by CICS
on the file request. VSAM returns a “timed-out” condition on any requests that
wait for a lock for more than the timeout interval, causing CICS to abend the user
task with an AFCV abend.

Although it is VSAM that implements the timeout mechanism, you define the
timeout value to CICS. You do this using either:

v The DTIMOUT parameter on transaction resource definitions, or

v The CICS system initialization parameter, FTIMEOUT, to provide a global value
for the CICS region.

A DTIMOUT value takes precedence over the global value.

Defining recovery attributes for VSAM Data Sets
To support RLS access, VSAM provides some new data set attributes for defining
whether the data set is recoverable or non-recoverable. You specify these when you
define (or alter) the data set cluster, and these attributes are stored in the ICF
catalog. You can also define backup-while-open (BWO) and forward recovery
options in the ICF catalog. For data sets that are being accessed in RLS mode, the
recovery and BWO attributes must be defined in the ICF catalog. If any of the new
ICF attributes are also defined in the CICS file resource definition, they are ignored.

You can also use the ICF catalog to specify the recovery attributes for non-RLS
files, in which case the equivalent information in CICS file resource definitions is
ignored.

For large numbers of VSAM data sets, where some are accessed in RLS mode and
some non-RLS, defining recovery attributes in two different places may add to the
difficulty of data administration. In this case, you might want to keep things simple
and define the recovery attributes for all files—RLS mode and non-RLS mode—in
the ICF catalog.

The recovery-related parameters are:

v LOG({NONE|UNDO|ALL}), to specify whether the data set is not recoverable,
backward recoverable, or backward and forward recoverable.

v LOGSTREAMID(name) to specify the forward recovery log stream name for data
sets defined with LOG(ALL).

v BWO(TYPECICS) to specify BWO support.

For information about these parameters, which are available on the access method
services DEFINE CLUSTER and ALTER commands, see z/OS DFSMS Access
Method Services, SC26-7394.

Planning Migration and Coexistence
You do not have to change your FOR for SMSVSAM, and migrate all your
CICS/ESA 4.1 regions to CICS Transaction Server regions, all at the same time.
You can migrate progressively, especially during the test and development phases
before cut-over into production.

Chapter 6. Planning for VSAM Record-Level Sharing 79

For example, if you currently have a number of CICS/ESA 4.1 regions that access
their VSAM files through a CICS/ESA 4.1 file-owning region, one migration
approach is as follows:

1. Begin by migrating the FOR to a CICS Transaction Server region.

2. Leave the AORs at the CICS 4.1 level, continuing to function ship file control
requests to the new FOR. Initially, the new FOR can continue using VSAM files
in non-RLS mode.

3. When you are satisfied that the CICS Transaction Server region is functioning
correctly in this mode, redefine the files as RLSACCESS(YES). The AORs
continue to function ship their file requests, but the FOR actually uses
SMSVSAM to access the data sets.

4. You can now progressively migrate the AORs to CICS Transaction Server for
OS/390 Release 1, changing the remote file definitions to local file definitions,
and changing the RLSACCESS(NO) attribute to RLSACCESS(YES).

This gradual migration process is illustrated in Figure 17 on page 81. The diagram
shows the point in the migration process when 2 of the AORs remain at the
CICS/ESA 4.1 level and 2 are migrated to CICS Transaction Server. The VSAM
files in the CICS/ESA 4.1 regions are defined as remote and file requests continue
to be function shipped to the FOR. The AORs running under CICS Transaction
Server access files directly in RLS mode through the services of SMSVSAM.

80 z/OS V1R1.0 Parallel Sysplex Application Migration

Fallback Planning
Before you migrate a production region you should prepare a plan for reverting to
your earlier release level if, for reasons connected with RLS or the MVS system
logger, you are unable to continue. Some considerations for such fallback planning
are discussed in the CICS Transaction Server for OS/390 Migration Guide.

Figure 17. Migration Scenario Using a Mixture of Function Shipping and RLS

Chapter 6. Planning for VSAM Record-Level Sharing 81

82 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 7. Planning for Temporary Storage Data Sharing

This chapter discusses some considerations for CICS temporary storage (TS) data
sharing across the sysplex using TS data sharing servers.

CICS temporary storage data sharing provides multiregion access to
nonrecoverable temporary storage queues. TS data sharing allows your CICS
applications to access nonrecoverable TS from multiple CICS regions running on
any MVS image within a sysplex. The ability to share TS queues within a sysplex
simplifies the migration of existing CICS applications to a Parallel Sysplex
environment.

Although TS data sharing queues are not recoverable, and are not backed out as
part of CICS transaction backout operations, they are normally preserved across a
CICS region restart, or an MVS re-IPL, providing the coupling facility is not stopped
and does not fail.

You do not need to change your application programs to exploit TS data sharing.
The TS data sharing facility is available through the CICS application programming
interface (API) for temporary storage.

Figure 18 on page 84 illustrates a TS data sharing configuration with TS servers
that replace queue-owning regions. The TS servers are started by program
DFHXQMN.

© Copyright IBM Corp. 1994, 2001 83

TS Pools and the Coupling Facility
CICS stores a set of TS queues that you want to share in a TS pool. Each TS pool
corresponds to a coupling facility list structure defined in the CFRM policy.

You can create a single TS pool or multiple TS pools within the sysplex, to suit your
requirements. For example:

v You can create separate pools for specific purposes—such as a TS pool for
production, or a TS pool for test and development.

v You can create more than one production pool, particularly if you have more than
one coupling facility and you want to allocate TS pool list structures to each
coupling facility

Defining Shared TS Queues
The addition of TS data sharing means there are now three types of TS queue. You
can define your temporary storage queues as:
1. Local queues
2. Remote queues
3. Shared queues.

Figure 18. Conceptual View of Parallel Sysplex with a TS Server in Each MVS Image

84 z/OS V1R1.0 Parallel Sysplex Application Migration

All these types of TS queue can be supported concurrently.

You specify the pool for a set of remote TS queues in one of the following ways:

v By defining, in the CSD, a TSMODEL resource definition that specifies the pool
name with an associated generic queue name (using the PREFIX attribute, which
is the equivalent of the DATAID in a TST entry).

Note: You cannot use a TSMODEL resource definition for applications that
specify an explicit SYSID on the EXEC CICS temporary storage
command. If you have appplication programs that specify a SYSID, either
on the API command itself or added by an XTSEREQ global user exit
program, you must continue to use a TST as described in the second
method.

v A CICS temporary storage table (TST) using the DFHTST TYPE=SHARED
macro. The TYPE=SHARED entry in the TST maps a remote SYSIDNT specified
in a TYPE=REMOTE entry to a TS pool name. Thus, if a TS queue is defined as
a remote queue in the temporary storage table, CICS checks for a corresponding
SYSIDNT in a TYPE=SHARED entry to determine the TS pool name.

See the CICS Resource Definition Guide for information on how to define shared
TS queues.

The TS Data Sharing Server
Access to a TS pool by CICS transactions running in an AOR is through a TS data
sharing server that supports a named pool. In each MVS image in the sysplex, start
one TS server for each pool that can be accessed from that MVS image. See the
CICS System Definition Guide for information about how to setup and start TS
servers.

All TS pool access is performed by cross-memory calls to the TS server for the
named pool. An AOR can access more than one TS server concurrently. This
multi-server access is required if you create multiple pools, because each TS server
provides access to only one pool of TS queues.

The methods for specifying a TS pool make it easy to migrate queues from a QOR
to a TS data sharing pool. If you have a TYPE=REMOTE entry in the TST that
specifies the SYSIDNT of a QOR, add a TYPE=SHARED entry, specifying a
corresponding SYSIDNT and the name of the TS pool in which the queue resides.

It is possible to use the TS global user exit, XTSEREQ, to modify or add the SYSID
on a TS request so that it references a TS data sharing pool. However, this restricts
your use of RDO for temporary storage definitions, and forces you to continue using
a temporary storage table with TYPE=SHARED entries. See the CICS
Customization Guide for information about CICS temporary storage global user
exits.

The Subsystem Interface
CICS regions use MVS cross-memory connection services to access the TS data
sharing server(s). These services (authorized cross-memory (AXM) server
environment services) are defined using the MVS subsystem interface (SSI). AXM
uses the SSI definition to schedule initialization in the master scheduler address
space. The MVS subsystem interface for AXM is not activated or used.

Chapter 7. Planning for Temporary Storage Data Sharing 85

The AXM subsystem is normally defined in the IEFSSNxx member of
SYS1.PARMLIB. This ensures that AXM system services are made automatically
available at IPL.

See the CICS System Definition Guide for more information about setting up and
starting TS servers.

Security
Access to TS pools by CICS regions is controlled by an external security manager,
which can be the SureWay Security Server, RACF, or an external security manager
that provides equivalent function.

The security checks are to ensure that:
v The TS server is authorized to access the TS pool structure in the coupling

facility.
v The TS server is authorized to act as a server for the TS pool.
v The AOR issuing the request is authorized to attach to the TS server.

See the CICS RACF Security Guide for information about authorizing access to TS
servers and TS pools.

The TS server does not perform security checks on individual requests. The AOR
continues to be responsible for resource security checks if you need to control user
access to temporary storage queues.

86 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 8. Planning for Coupling Facility Data Tables

This chapter discusses some considerations for CICS coupling facility data tables
(CFDTs) to provide shared file access across the sysplex using CFDT servers.

Coupling facility data tables provide a method of file data sharing, using CICS file
control, without the need for a file-owning region, and without the need for VSAM
RLS support. CICS CFDT support is designed to provide rapid sharing of working
data within a sysplex, with update integrity. The data is held in a coupling facility, in
a table that is similar in many ways to a shared user-maintained data table.

Because read access and write access have similar performance, this form of table
is particularly useful for scratchpad data. Typical uses might include sharing
scratchpad data between CICS regions across a sysplex, or sharing of files for
which changes do not have to be permanently saved. There are many different
requirements for scratchpad data, and most of these can be implemented using
CFDTs. Coupling facility data tables are particularly useful for grouping data into
different tables, where the items can be identified and retrieved by their keys. For
example, you could use a CFDT to maintain a list of the numbers of lost credit
cards.

Comparison with User-maintained Data Tables
To an application, a CFDT appears much like a sysplex-wide user-maintained data
table, because it is accessed in the same way using the file control API. However,
in a CFDT there is a maximum key-length restriction of 16 bytes.

Coupling Facility Data Table Models
There are two models of coupling facility data table:

v The contention model, which gives optimal performance but generally requires
programs written to exploit it. This model is non-recoverable: CFDT updates are
not backed out if a unit of work fails.

v The locking model, which is API-compatible with programs that conform to the
user-maintained data table subset of the file control API (this subset is nearly, but
not quite, the full file control API).

This model can either be:

– Non-recoverable: locks do not last until syncpoint, and CFDT updates are not
backed out if a unit of work fails, or

– Recoverable: coupling facility data tables are recoverable in the event of a
unit of work failure and in the event of a CICS region failure (in that updates
made by units of work that were in-flight at the time of the CICS failure are
backed out).

Figure 19 on page 88 illustrates a coupling facility data table configuration with
CFDT servers that replace file-owning regions with user-maintained data tables. The
CFDT servers are started by program DFHCFMN.

© Copyright IBM Corp. 1994, 2001 87

CFDT Pools and the Coupling Facility
CICS stores one or more CFDTs in a CFDT pool. Each CFDT pool corresponds to
a coupling facility list structure defined in the CFRM policy.

You can create a single CFDT pool or multiple CFDT pools within the sysplex, to
suit your requirements. For example:

v You can create separate pools for specific purposes—such as a CFDT pool for
production, or a CFDT pool for test and development.

v You can create more than one production pool, particularly if you have more than
one coupling facility and you want to allocate CFDT pool list structures to each
coupling facility

See the CICS System Definition Guide for information about defining a list structure
for a coupling facility data table pool.

MVS1
VTAM

TOR1

AOR AOR AOR

DFHCFMN
CFDT server

DFHCFMN
CFDT server

DFHCFMN
CFDT server

MVS2
VTAM

TOR2

AOR AOR AOR

MVS3
VTAM

TOR3

AOR AOR AOR

(CF1)

Coupling
facilties

Coupling
facility

data table
pool

F2)

Figure 19. Conceptual View of Parallel Sysplex with a CFDT Server in Each MVS Image

88 z/OS V1R1.0 Parallel Sysplex Application Migration

Defining a Coupling Facility Data Table
With coupling facility data tables there are three types of data table. You can define
your data table as:
v A CICS-maintained data table
v A user-maintained data table
v A coupling facility data table.

You specify the pool for a coupling facility data table on the file resource definition
for the file that your application programs use to reference the table, using the
DATATABLE attributes, TABLE and MAXNUMRECS. If you specify TABLE(CF) you
also specify the required CFDATATABLE attributes, CFDTPOOL, TABLENAME
UPDATEMODEL, and LOAD.

See the CICS Resource Definition Guide for information on how to define coupling
facility data table file definitions.

The Coupling Facility Data Table Server
Access to a CFDT pool by CICS transactions running in an AOR is through a CFDT
server that supports a named CFDT pool. In each MVS image in the sysplex, start
one CFDT server for each pool that can be accessed from that MVS image. See
the CICS System Definition Guide for information about how to setup and start
CFDT servers.

All CFDT pool access is performed by cross-memory calls to the CFDT server for
the named pool. An AOR can access more than one CFDT server concurrently. This
multi-server access is required if you create multiple pools, because each CFDT
server provides access to only one pool of coupling facility data tables.

The methods for specifying a CFDT pool make it easy to migrate a file from an
FOR to a CFDT pool. If you have a file resource definition specified as TABLE(NO),
you can change this to TABLE(CF), and add the other required attributes, such as
the pool name, and the CFDT server will automatically build the table in the
relevant CFDT pool. You can switch back to using an ordinary VSAM file by
changing TABLE(CF) back to TABLE(NO), and any other CFDT attributes are
ignored.

The Subsystem Interface
CICS regions use MVS cross-memory connection services to access the CFDT
server(s). These services (authorized cross-memory (AXM) server environment
services) are defined using the MVS subsystem interface (SSI). AXM uses the SSI
definition to schedule initialization in the master scheduler address space. The MVS
subsystem interface for AXM is not activated or used.

The AXM subsystem is normally defined in the IEFSSNxx member of
SYS1.PARMLIB. This ensures that AXM system services are made automatically
available at IPL.

See the CICS System Definition Guide for more information about setting up and
starting CFDT servers.

Chapter 8. Planning for Coupling Facility Data Tables 89

Security
Access to CFDT pools by CICS regions is controlled by an external security
manager, which can be the SureWay Security Server, RACF, or an external security
manager that provides equivalent function.

The security checks are to ensure that:
v The CFDT server is authorized to access the CFDT pool structure in the coupling

facility.
v The CFDT server is authorized to act as a server for the CFDT pool.
v The AOR issuing the request is authorized to attach to the CFDT server.

See the CICS RACF Security Guide for information about authorizing access to
CFDT servers and CFDT pools.

The CFDT server does not perform security checks on individual requests. The
AOR continues to be responsible for resource security checks if you need to control
user access to files.

90 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 9. Planning for Named Number Counters

This chapter discusses some considerations for CICS named number counters,
which provide a facility for generating unique sequence numbers throughout the
sysplex, using named counter servers.

CICS provides this facility for use by applications in a Parallel Sysplex environment
(for example, to allocate a unique number for orders or invoices). The facility is
provided by a named counter server, which maintains each sequence of numbers
as a named counter. Each time a sequence number is assigned, the corresponding
named counter is incremented automatically so that the next request gets the next
number in sequence.

The named counter server is modeled on the other coupling facility servers used by
CICS, and has many features in common with the coupling facility data table server.

A named counter server provides a full set of functions to define and use named
counters. Each named counter consists of:

v A 16-byte name

v A current value

v A minimum value

v A maximum value.

The values are internally stored as 8-byte (double word) binary numbers, but the
user interface allows them to be treated as any length from 1 to 8 bytes, typically 4
bytes.

Named counters are stored in a pool of named counters, where each pool is a
small coupling facility list structure, with keys but no data. The pool name forms part
of the list structure name. Each named counter is stored as a list structure entry
keyed on the specified name, and each request for the next value requires only a
single coupling facility access.

The Named Counter Application Programming Interfaces
You access the named counter through one of two application programming
interfaces:

v The CICS API, which is provided for use in CICS application programs

v A callable interface, which can be used in batch jobs, sharing the same named
counters as CICS regions

Figure 20 on page 92 illustrates a named counter server configuration. The named
counter servers are started by program DFHNCMN.

© Copyright IBM Corp. 1994, 2001 91

Named Counter Pools and the Coupling Facility
CICS stores one or more named counters in a named counter pool. Each named
counter pool corresponds to a coupling facility list structure defined in the CFRM
policy.

You can create a single named counter pool or multiple pools within the sysplex, to
suit your requirements. For example:

v You can create separate pools for specific purposes—such as a named counter
pool for production, or a named counter pool for test and development.

v You can create more than one production pool, particularly if you have more than
one coupling facility and you want to allocate named counter pool list structures
to each coupling facility

See the CICS System Definition Guide for information about defining a list structure
for a named counter pool.

MVS1
VTAM

TOR1

AOR AOR AOR

DFHNCMN
NC server

DFHNCMN
NC server

DFHNCMN
NC server

MVS2
VTAM

TOR2

AOR AOR AOR

MVS3
VTAM

TOR3

AOR AOR AOR

pool
counter
Number

facility (CF1)
Coupling

F2)

Figure 20. Conceptual View of Parallel Sysplex with a Named Counter Server in Each MVS Image

92 z/OS V1R1.0 Parallel Sysplex Application Migration

Defining a Named Counter Options Table
Unlike the other CICS data sharing facilities (coupling facility data tables and
temporary storage data sharing) there are no CICS resource definitions for named
counters. Instead, you need a named counter options table, DFHNCOPT, and when
using named counters from a CICS region, you may also need to specify the
NCPLDFT system initialization parameter.

The named counter programming interface determines the actual pool name in
response to a request by referring to the DFHNCOPT options table. CICS supplies
a default DFHNCOPT in source form, which you can customize and generate using
the DFHNCO macro. A typical use of the options table is to enable production and
test regions to use a different counter pool without needing to change the pool
name in application programs. If the pool name cannot be resolved by reference to
the named counter options table in response to a CICS API request, the default
pool name specified on the NCPLDFT system initialization parameter is used.

See the CICS System Definition Guide for information on how to define a named
counter options table.

The Named Counter Server
Access to a named counter pool by CICS transactions running in an AOR, or by a
batch program, is through a named counter server that supports a named named
counter pool. In each MVS image in the sysplex, start one named counter server for
each pool that can be accessed from that MVS image. See the CICS System
Definition Guide for information about how to setup and start named counter
servers.

All named counter pool access is performed by cross-memory calls to the named
counter server for the named pool. An AOR or batch program can access more
than one named counter server concurrently. This multi-server access is required if
you create multiple pools, because each named counter server provides access to
only one pool of named counters.

The Subsystem Interface
CICS regions and the callable interface use MVS cross-memory connection
services to access the named counter server(s). These services (authorized
cross-memory (AXM) server environment services) are defined using the MVS
subsystem interface (SSI). AXM uses the SSI definition to schedule initialization in
the master scheduler address space. The MVS subsystem interface for AXM is not
activated or used.

The AXM subsystem is normally defined in the IEFSSNxx member of
SYS1.PARMLIB. This ensures that AXM system services are made automatically
available at IPL.

See the CICS System Definition Guide for more information about setting up and
starting named counter servers.

Chapter 9. Planning for Named Number Counters 93

Security
Access to named counter pools is controlled by an external security manager, which
can be the SureWay Security Server, RACF, or an external security manager that
provides equivalent function.

The security checks are to ensure that:

v The named counter server is authorized to access the named counter pool
structure in the coupling facility.

v The named counter server is authorized to act as a server for the named counter
pool.

v The AOR or batch program issuing the request is authorized to attach to the
named counter server.

See the CICS RACF Security Guide for information about authorizing access to
CFDT servers and CFDT pools.

The CFDT server does not perform security checks on individual requests. The
AOR continues to be responsible for resource security checks if you need to control
user access to files.

94 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 10. Planning Resource-Owning Regions

Chapter 6 and “Chapter 7. Planning for Temporary Storage Data Sharing” on
page 83 describe how you can share VSAM data and CICS temporary storage
queues, using SMSVSAM servers and CICS temporary storage servers,
respectively. This chapter describes how CICS regions can use CICS function
shipping to access data sets and temporary storage queues when the server
methods are inappropriate.

There are two main sections:

v “Planning the File-Owning Regions”, which discusses CICS file control data
sharing using a file-owning region (FOR)

v “Planning the Queue-Owning Regions” on page 100, which discusses CICS
temporary storage data sharing using a queue-owning region (QOR).

Planning the File-Owning Regions
In Chapter 2. Planning the Subsystem Configuration for a Sysplex, the proposed
target configuration does not show any file-owning regions (FORs), because it is
assumed that the CICS AORs access VSAM data sets in RLS mode. However, it is
possible that not all the VSAM data sets used by your CICS applications are
suitable candidates for RLS access, or your applications might use some BDAM
data sets. This § discusses factors to consider when you need to make such data
sets available to all AORs by function shipping file requests to an FOR.

With files defined as remote CICS files, the application-owning regions function ship
CICS file control requests to the remote region that is defined as owning the files.
This enables CICS to operate a form of data sharing, using its file control facility.

Function Shipping
Function shipping allows you to define VSAM (and BDAM) data files as remote
resources. This allows application programs to request data set services from a
connected CICS region where the data sets are physically defined.

The principal reason for function shipping CICS file control requests is to enable
more than one CICS region to have access to VSAM and BDAM data that would
otherwise be available to only a single CICS region. This is because, for integrity
reasons, only one CICS region can have a data set open at any one time; and in a
dynamic transaction routing environment you need the ability to access VSAM data
from a number of application-owning regions.

Figure 21 on page 96 shows a typical function-shipping configuration. In this
example, an application program running in CICS region HAA1 issues a CICS
command to read from a CICS VSAM file, FILEX. HAA1 searches for an entry for
FILEX in its file control table and finds that the file is defined as a remote file on
HFA1. HAA1 sends the request to HFA1, which initiates a CICS-supplied mirror
transaction (the CSMI transaction for file control requests) to issue the request
again on behalf of HAA1. HFA1 searches for an entry for FILEX in its file control
table, which it finds is a local entry (although it could have been remote, on yet
another system).

HFA1 completes the read request and the mirror task returns the data record (or
error information) to HAA1 which, in turn, passes the data to the original requesting
program.

© Copyright IBM Corp. 1994, 2001 95

Generally, unless the file-owning region is running with long-running mirrors
specified (the default for MRO), the mirror task remains active only as long as
necessary to complete the request, then terminates. For update requests, however,
mirror tasks automatically become long-running because the mirror must wait until
the syncpoint request is received from the requestor (the application-owning region).

CICS file control manages its own record locks to ensure a record can be accessed
by only one file request at a time, using its own record locking mechanism. It also
manages data integrity in the event of failure, ensuring that uncommitted updates
are backed out.

When planning for the function shipping of CICS file control requests to a
file-owning region, you must consider the following factors:

v Number of file-owning regions

v Availability of the data

v Capacity planning

v Data integrity

v Security.

Planning the Number of File-Owning Regions
You need to consider how many file-owning regions you need in your CICSplex,
and the possible effect of function shipping on performance when your VSAM data
sets are owned by more than one file-owning region.

When, for a single application program, requests are function shipped for different
VSAM resources to more than one file-owning region, this is more costly than
function shipping all the requests to the same file-owning region. This is because of
the overhead of the attach and detach mechanisms for the mirror tasks, and the

Figure 21. Function Shipping. This diagram illustrates a typical function-shipping
configuration. Two CICS systems, HAA1 and HFA1, are linked by an MRO session.

96 z/OS V1R1.0 Parallel Sysplex Application Migration

additional MRO flows that are required at the end of each task. Sending all
requests from the same transaction instance to the same file-owning region is the
most efficient in performance terms, because the requests can all be handled by
the same mirror task. To ensure the use of the same mirror to handle separate
requests from the same transaction instance, you are recommended to specify long
running mirror tasks for your file-owning regions.

Note that browse requests and update requests from an application program are
automatically handled by the same mirror. This is illustrated in Figure 22.

Note: Figure 22 shows the main intercommunication flows for the simplest case—it
is not meant to illustrate all the possible MRO flows.

This means that, for performance reasons, you should consider defining to the
same file-owning region all the data sets that are referenced by the same
application program.

See the CICS Intercommunication Guide for more information about CICS function
shipping and mirror transactions.

Avoiding Bottlenecks in the CICSplex
Sending all requests from the same transaction instance to the same file-owning
region is the most efficient in performance terms. On the other hand, if you
concentrate the ownership of all the VSAM data sets into one file-owning region you
risk overloading that single CICS region. You should study your applications, and
their use of the various data sets, and try to determine what is the optimum number
of file-owning regions, taking account of all the factors.

.
Reply is passed to
application program

.
EXEC CICS REWRITE
FILE(’FILEA’)

Reply is passed to
application program

.

.
EXEC CICS RETURN

CICS File-Owning
Region (HFA1)

READ reply

REWRITE request

REWRITE reply

’SYNCPOINT’ request,
last

Positive response

Attach CSMI, READ
UPDATE request

READ UPDATE reply

READ request

Attach mirror task

Perform READ UPDATE (FILEA)

Mirror waits

Mirror resumes

Perform READ (FILEB)

Mirror waits

Mirror resumes - performs
REWRITE (FILEA)

CICS Application-Owning
Region (HAA1)

.
EXEC CICS READ UPDATE
FILE(’FILEA’) . . .

.

.
Reply is passed to
application program

.
EXEC CICS READ
FILE(’FILEB’)

Syncpoint is completed.
Application terminates;
control returned to CICS

Transmitted
Information

Mirror waits, still
holding the enqueue on
the updated record

Mirror takes syncpoint,
releases the enqueue,
frees the session, and
terminates.

Figure 22. Function Shipping—Update. Because the mirror must wait for the REWRITE, it becomes long-running and
does not terminate until SYNCPOINT is received.

Chapter 10. Planning Resource-Owning Regions 97

Clearly, if some applications have their own data sets, the best approach would
probably be to create a separate file-owning region for these data sets. For
example, if the application marked Appl_A illustrated in Figure 15 on page 69, does
not share data with any of the other applications, all the Appl_A data sets could be
grouped in one file-owning region. The same is true for the applications labeled
Appl_B and Appl_C. Therefore, depending on the degree of data sharing between
the applications, we could allocate up to three file-owning regions to support the
three illustrated applications. Basically, the more file-owning regions you have, the
better it is for capacity reasons, and the less risk there is of causing intersystem
queuing. Queuing caused by overloading a file-owning region can lead to
performance degradation in regions connected to the file-owning region, and this
can spread back to affect the terminal-owning regions.

Ensuring Availability of the Data
In the previous § we discussed the possibility of using more than one file-owning
region for capacity reasons. Another reason for operating a CICSplex with more
than one file-owning region is availability.

If a CICSplex is configured with only one file-owning region, that region becomes a
potential single point of failure. For example, if all the data sets required by the
three applications illustrated in Figure 15 on page 69 were owned by a single
file-owning region, a failure of that file-owning region would cause the failure of all
the applications. Separating the ownership of the files, where possible, into different
file-owning regions ensures that the loss of one file-owning region does not cause
the loss of all applications.

As a general rule, you should try to avoid installing separate sets of files, required
by different applications, in the same file-owning region.

Capacity Planning Considerations
Another factor to consider when planning the number and allocation of file-owning
regions is the use of central processor resources.

Like all CICS regions, a CICS file-owning region runs tasks, such as the MRO
mirror task, under the CICS quasi-reentrant TCB, with some limited subtasking
under the concurrent TCB. This means that, regardless of how many central
processors are available to an MVS image, a CICS file-owning region can only
utilize just over one CP on average. The following are some general points to note
about the allocating of file-owning regions:

v You should ensure enough processing capacity for any file-owning region
allocated to an MVS image in the sysplex.

If a file-owning region is short of central processor resource, this situation could
create a bottleneck that affects all regions in the CICSplex that are linked to that
file-owning region.

v If you create multiple file-owning regions, do not assign them all to the same
MVS image.

If an MVS image fails, you lose access to all the VSAM data. Also, positioning a
file-owning region on the same MVS image as some of the application-owning
regions is better for performance reasons. This is because then at least a
proportion of the function-shipped requests are across MRO links within the
same MVS image, which gives slightly better performance than XCF/MRO.

98 z/OS V1R1.0 Parallel Sysplex Application Migration

Data Integrity Considerations
When planning the distribution of files among multiple file-owning regions, you must
consider the recovery implications for data integrity.

Data integrity in an MRO environment involves CICS recoverable resources. These
are any resources that have changes backed out, if necessary, during dynamic
transaction backout, or during a CICS emergency restart.

VSAM files are CICS resources that can be defined as recoverable resources.

The main data integrity factor you have to consider when choosing the number of
file-owning regions for your CICSplex is the in-doubt period (also sometimes
referred to as the in-doubt window).

The In-doubt Period
As shown by the illustration of a function-shipping update request in Figure 22 on
page 97, a SYNCPOINT request is sent by the application-owning region to the
file-owning region to commit any changes to CICS recoverable resources. Until the
file-owning region responds to confirm that it has obeyed the SYNCPOINT request,
there is a period during which the application-owning region does not know whether
the file-owning region has actually committed the changes.

This period is known as the in-doubt period, and is illustrated in Figure 23.

In the event of a failure of either the application-owning region or the file-owning
region, or the loss of the link between the regions during the in-doubt period, CICS
backs out the changes made to any recoverable resources according to the
INDOUBT attribute on the transaction resource definition. If both the
application-owning region and file-owning region have made changes to (different)
recoverable resources, the recovery of these can be inconsistent in certain
circumstances. This situation cannot arise for VSAM data in our target CICSplex

File-Owning
Region

Indoubt
Period

Application-Owning
Region

SYNCPOINT request

(Mirror task)

Begin SYNCPOINT

End of task

SYNCPOINT response

Figure 23. SYNCPOINT Processing in an MRO Environment

Chapter 10. Planning Resource-Owning Regions 99

shown in Figure 1 on page 18, because the application-owning regions do not own
any recoverable VSAM resources. In our CICSplex these are owned by the
file-owning region.

However, the integrity exposure does exist in the following types of scenario:

v The same logical unit of work in an application-owning region updates remote
recoverable resources that are owned by more than one file-owning region.

v The same logical unit of work in an application-owning region updates some local
recoverable resources and some remote recoverable resources owned by a
file-owning region.

v The same logical unit of work in an application-owning region updates remote
recoverable resources that are owned by different resource managers and one of
the resource managers is a CICS file-owning region. For example, resources
owned by either DBCTL or DB2 on the one hand, and by a file-owning region on
the other.

Allocating ownership of recoverable VSAM resources

As a general rule, you should ensure that all recoverable VSAM data sets that
are updated by one logical unit of work are owned by the same CICS
region—a file-owning region in our case.

This does not mean that you cannot have more than one file-owning region in the
CICSplex; it means that you must carefully allocate the ownership of the VSAM
data sets on the basis of recoverability and your data integrity requirements:

v Avoid distributing recoverable resources among multiple CICS regions if they are
to be updated by the same application transaction.

v Where a transaction accesses data from different VSAM data sets, and some is
defined as nonrecoverable data and some as recoverable data, ensure that all
the recoverable data sets are owned by the same CICS file-owning region.

The nonrecoverable data sets can be owned by a different file-owning region
without risk to data integrity.

Note: All these data integrity considerations apply to other CICS recoverable
resources, such as temporary storage. See “Planning the Queue-Owning
Regions” for information about recoverable queues.

Planning the Queue-Owning Regions
In Chapter 2. Planning the Subsystem Configuration for a Sysplex, the proposed
target configuration does not show any queue-owning regions (QORs), because it is
assumed that the CICS AORs access remote temporary storage queues through a
temporary storage server. However, TS data sharing through a TS server is
restricted to non-recoverable TS queues, therefore, if you want to share recoverable
temporary storage data between CICS regions a QOR is the only solution .

This topic discusses why you should consider defining temporary storage queues
and transient data queues as remote resources owned by a queue-owning region.
(The main reason for doing this is to avoid inter-transaction affinity associated with
CICS queues.)

100 z/OS V1R1.0 Parallel Sysplex Application Migration

It also considers a number of factors that you should take into account when
planning to create a queue-owning region.

Avoiding Inter-transaction Affinity Associated with CICS Queues
To ensure maximum flexibility, dynamic transaction routing should not be
constrained by a dependence on CICS temporary storage queues.

As with VSAM files, you can make CICS temporary storage and transient data
queues globally accessible across the CICSplex by defining the queues to the
application-owning regions as remote queues owned by one or more queue-owning
regions. You should consider creating a queue-owning region to avoid potential, or
actual, inter-transaction affinity problems associated with the use of CICS temporary
storage, or transient data, queues.

For example, consider a temporary storage queue, CICSTSQ1, that is locally
owned by CICS application-owning region DAA1, as shown in Figure 24.

The steps shown in Figure 24 are as follows:

v Transaction TRN1 running in DAA1 writes temporary storage data to CICSTSQ1,
which is intended to be read by TRN2, and terminates. Typically, TRN1 might be
the first phase of a pseudo-conversational transaction.

v TRN2, the next phase of the pseudo conversation, is invoked by the terminal
user, and is routed by the dynamic transaction routing program to a different
application-owning region, DAA2.

v The TRN2 task is attached in DAA2, and attempts to read the data item written
for it by TRN1 from temporary storage queue, CICSTSQ1. Because the data was
written by TRN1 to a local temporary storage queue, owned by CICS DAA1, the
attempt to retrieve the data fails. The failure will be one of two types:

1. CICS returns a read error because TRN2 is attempting to read from a
nonexistent queue, or

2. CICS returns the wrong data if DAA2 also has a temporary storage queue
called CICSTSQ1.

DAA2

TRN2 issues a
read for TS
queue CICSTSQ1,
which either
fails or
retrieves
the wrong data

DTR
Program

TOR If the dynamic transaction routing
(DTR) program routes TRN2 to DAA2
as shown. TRN2 fails to access the
TS queue data stored for it by TRN1

DAA1

TRN1 writes
data intended
for TRN2 to
local queue
CICSTSQ1

Local
Temporary

Storage

CICSTSQ1

Figure 24. Example of Inter-transaction Affinity Caused by Using Local Temporary Storage

Chapter 10. Planning Resource-Owning Regions 101

How you resolve this situation depends to some degree on the nature of the
transactions:

v In a pseudo-conversational transaction, the best way is to change the program to
use a COMMAREA to pass data between the phases of the conversation.
However, this involves changes to the application programs, which you may not
want or be able to do, in which case you have to adopt the same solution as for
the non-pseudoconversational case.

v For non-pseudoconversational transactions, you can:

– Create a remote region to own the queue and handle function-shipped
requests for CICSTSQ1 data

– Define the queue, CICSTSQ1, to the application-owning regions as a remote
queue in a CICS temporary storage table (TST)

– Install the TST defining the remote queues in each application-owning region.

A transaction can issue a request in any application-owning region that contains
a remote definition for the queue, and that request is satisfied by being function
shipped to the remote queue-owning region.

Of course, not all temporary storage queues need to be shared. Some queues can
be locally owned (when there is no question of inter-transaction affinity), or queues
can be replicated. Also, provided the affinity is not too pervasive, you can choose to
accept a certain level of inter-transaction affinity, and manage this by means of logic
in your dynamic transaction routing program. For example, CICSPlex SM can
manage inter-transaction affinities for and send affected transactions to the same
application-owning region.

Creating a Queue-Owning Region
Some of the factors to consider when you plan the queue-owning regions are the
same as those that apply to planning the file-owning regions: These are:
v How many regions?
v Capacity planning
v Availability
v Security.

For information about these topics, see “Planning the File-Owning Regions” on
page 95.

The additional factors you should take into account when planning to create one or
more queue-owning regions are as follows:

1. Naming conventions for remote temporary storage queues

2. Using transient data in a queue-owning region

3. Data integrity considerations.

These are described in the following sections.

Naming Conventions for Remote Temporary Storage Queues
There are two types of temporary storage queue names:

v Names that are generated dynamically by application programs

v Names that are fixed (precoded within an application program).

To define a queue as remote you must include an entry for the queue in a
temporary storage table (TST). The TST naming convention allows for dynamic
names by accepting generic names formed by a constant prefix, to which a CICS
application program can add a variable suffix.

102 z/OS V1R1.0 Parallel Sysplex Application Migration

Generic names are formed from the leading characters of the 8-character queue
names and can be up to 7 characters long. (Names in a TST entry using all 8
characters are specific temporary storage queue names.)

The usual convention for dynamically naming temporary storage queues is to use a
4-character prefix (for example, the transaction identifier) followed by a 4-character
terminal identifier as the suffix. This generates queue names that are unique for a
given terminal, and which can be simply defined in a TST by specifying the DATAID
parameter. To define them as remote queues, you also need to specify the name of
the remote system on the SYSIDNT parameter.

If your naming convention for dynamically named queues does not conform to a
generic naming convention such as that just described, the queue may not be
capable of being defined as remote, and all transactions that access the queue
must be routed to the application-owning region where the queue was created.
Furthermore, the CICS/ESA pre-Version 4 temporary storage global user exit points
XTSREQ, XTSIN, XTSOUT do not allow you to modify queue names.

CICS/ESA 4.1, however, provides an additional global user exit point, XTSEREQ,
that allows you to modify the temporary storage queue name before CICS performs
TST lookup. You can write a global user exit program for this exit point, to change
the name to one that conforms to remote naming conventions. For example, it could
transpose the first 4 and last 4 characters if the queue name has a constant suffix
rather than a constant prefix.

See Figure 25 for an illustration of the use of a remote queue-owning region.

TST=XX TST=XX TST=XX TST=XX

DFHTSTYY

Figure 25. Using Remote Queues to Avoid Inter-transaction Affinity Relating to Temporary
Storage. In the TST defined for the AORs (suffix=XX), all the TS queues are remote, defined
as owned by the queue-owning region (SYSID=DQC1). The TST defined for the
queue-owning region (suffix=YY), defines which queues are recoverable.

Chapter 10. Planning Resource-Owning Regions 103

Note: Using a transaction’s task number is not recommended as a way of creating
unique queue names, because they are not guaranteed to be unique across
the CICSplex.

Exception Conditions for Globally Accessible Queues: If you eliminate
inter-transaction affinity relating to temporary storage queues by the use of a global
queue-owning region, you must also be sure to review exception condition handling.
This is because some exception conditions can occur that were not possible when
the transactions and the queue were local in the same region. These situations
arise because the application-owning region and queue-owning region can fail
independently, causing circumstances where:

v The queue already exists, because only the AOR failed while the queue-owning
region continued

v The queue is not found, because only the queue-owning region failed while the
application-owning region continued.

Using Transient Data in a Queue-Owning Region
Another form of data queue that CICS application programs commonly use is the
transient data (TD) queue.

The dynamic transaction routing considerations for TD queues have much in
common with those for temporary storage, and, like temporary storage, not all
transient data queues need to be shared. Some queues can be locally owned
(when there is no question of inter-transaction affinity), or queues can be replicated.

To enable transactions sharing a TD queue to be dynamically routed to a set of
application-owning regions, you must ensure that the TD queues are globally
accessible to those application-owning regions.

All TD queues must be defined as remote entries in a destination control table
(DCT).

However, there is a restriction for TD queues that use the trigger function (see the
CICS Application Programming Guide for information about automatic transaction
initiation (ATI) and trigger levels). The transaction to be invoked when the trigger
level is reached must be defined as a local transaction in the region where the
queue resides (in the queue-owning region). Thus the trigger transaction must
execute in the queue-owning region. However, any terminal associated with the
queue (specified on the DESTFAC parameter) need not be defined as a local
terminal in the queue-owning region. This does not create an inter-transaction
affinity.

Note: Trigger-level transactions that are associated with a terminal must be defined
in the terminal-owning regions as remote transactions that are
statically-routed. This also means that you need connectivity between all
terminal-owning regions and a global queue-owning region.

See Figure 26 on page 105 for an illustration of the use of a remote transient-data
queue-owning region.

104 z/OS V1R1.0 Parallel Sysplex Application Migration

Exception Conditions for Globally Accessible Queues: When you eliminate
inter-transaction affinity relating to TD queues, by the use of a global queue-owning
region, there should not be any new exception conditions (other than SYSIDERR if
there is a system definition error or failure).

Special Considerations for Trigger-Level Transactions: The transaction defined
in a transient data queue definition that specifies the TRIGLEV attribute must be
defined as a local transaction in the queue-owning region, otherwise transaction
initiation fails.

This means that all such triggered transactions run in the queue-owning region.
Thus, the user application programs invoked by the trigger transactions run in the
queue-owning region, and the resources required by these programs must be made
available to the queue-owning region. Hence it is, in the general case, necessary to
provide connectivity from the QOR to the other subsystems (file-owning regions,
other queue-owning regions, DBCTL, and DB2) that such programs may require.

If the triggered transaction is associated with a terminal then there must be
connectivity between the queue-owning region and the terminal-owning region that
owns the terminal. The queue-owning region must also be able to associate the
terminal with the correct terminal-owning region. Since the terminal id is specified in
the TD queue definition, it is probably sensible to predefine it in the queue-owning
region as a remote terminal owned by one of the terminal-owning regions.
Alternatively, you could use a “terminal not found” global user exit program to
nominate the terminal-owning region that owns the terminal.

DCT=XX DCT=XX DCT=XX DCT=XX

DCT=YY

DFHDCTYY

DFHDCTXX

AAAA
ABCD
XXXX
ZZZZ

AAAA
ABCD
XXXX
ZZZZ

nn
nn

DQC1
DQC1
DQC1
DQC1

BBBB
CCCC

TRM1
PRT1

Figure 26. Using Remote Queues to Avoid Inter-transaction Affinity Relating to Transient
Data. In the DCT defined for the AORs (suffix=XX), all the TD queues are remote, defined as
owned by the queue-owning region (SYSID=DQC1). In the DCT defined for the
queue-owning region (suffix=YY), all the TD queues are local, some with trigger levels.

Chapter 10. Planning Resource-Owning Regions 105

In addition, if the triggered transaction has any inter-transaction affinity with other
transactions, those transactions must also run in the QOR. You can ensure this
happens by defining the other transactions as statically-routed remote transactions
in each of the terminal-owning regions, and defining connections between each
terminal-owning region and the queue-owning region.

Data Integrity Considerations
The data integrity considerations for queue-owning regions are very much the same
as for file-owning regions.

When planning to manage queues as a remote resource owned by a queue-owning
region, you must consider the recovery implications for data integrity.

Temporary storage queues are CICS resources that can be defined as recoverable
resources.

The data integrity factor you have to consider when planning the number of
queue-owning regions in your CICSplex is the in doubt period.

As stated in “Planning the File-Owning Regions” on page 95, the possibility of
in-doubt situations means there is a potential risk to data integrity when recoverable
resources are owned by more than one CICS region. This is true if the recoverable
resources owned by the different regions are of different types; that is, a mixture of
VSAM files and temporary storage queues. For the present, in CICS/ESA 4.1, there
is no automatic recovery or protection from the in-doubt situation during recovery
processing as in a CICS emergency restart.

Therefore, when planning your MRO configuration to obtain the maximum benefit
from the range of facilities offered by the sysplex environment, you must carefully
study how your applications use resources such as temporary storage queues.
Consider the following questions:

v Are the queues defined as recoverable? If not, there are no data integrity
concerns.

v If some queues are defined as recoverable resources, are they accessed within
the same unit-of-work as other recoverable resources, so as to cause a potential
data integrity exposure?

Allocating ownership of recoverable resources

As a general rule, you should ensure that all recoverable resources that are
updated by one logical unit of work are owned by the same CICS region. If the
resources are of different types, such as VSAM data and temporary storage
queues, allocate them to a common resource-owning region.

See “Planning the File-Owning Regions” on page 95 for more information about
data integrity considerations.

Performance and Availability
You might also want to consider performance benefits, as well as data integrity,
when deciding whether to have separate or combined resource-owning regions.
Operating a combined file-owning region/queue-owning region for a given
application’s resources offers performance advantages compared with splitting them
into separate region types.

106 z/OS V1R1.0 Parallel Sysplex Application Migration

There are also availability advantages in having different combined terminal-owning
regions/queue-owning regions owning the resources for different applications.

Chapter 10. Planning Resource-Owning Regions 107

108 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 11. Planning for IMS DBCTL Multisystem Data
Sharing with CICS

This chapter describes how to enable multisystem data sharing for CICS
transactions that access IMS full-function and Fast Path databases managed by
IMS Database Control (DBCTL). IMS data sharing allows multiple subsystems
within a sysplex to have concurrent access, with data integrity, to IMS databases.

Within a sysplex environment, the subsystems can be:
v A number of IMS DBCTL subsystems
v A number of IMS DB online subsystems

This chapter covers the following topics:

v Migrating from CICS local DL/I to CICS with IMS DBCTL.

If you are currently using IMS databases through the CICS local DL/I interface,
you must first migrate to DBCTL.

v Creating multiple IMS DBCTL subsystems.

If you are already using IMS DBCTL to provide access to the IMS databases,
you need to consider replicating the DBCTL subsystems.

v Converting CICS shared database programs to batch message processing (BMP)
programs.

v Creating the data sharing environment.

This involves planning to use the IMS database recovery control (DBRC)
together with the IMS resource lock manager (IRLM) subsystem, and the
coupling facility.

Further information

For general information about migrating to, and using, IMS DBCTL with CICS,
see the CICS IMS Database Control Guide, and the relevant IMS/ESA
publications.

Migrating from CICS Local DL/I to IMS DBCTL
You cannot use IMS multisystem data sharing with CICS local DL/I. To enable all
the CICS application-owning regions shown in our target configuration to access the
IMS databases, you must migrate the databases from CICS ownership to
IMS DBCTL ownership.

When Databases Need to be Migrated
You will need to migrate the IMS databases if they are owned directly by a CICS
application-owning region that needs access to the data, or owned by a CICS
file-owning region to which multiple application-owning regions function ship their
DL/I requests (as illustrated in Figure 27 and Figure 28).

© Copyright IBM Corp. 1994, 2001 109

If you are using either of the CICS local DL/I methods shown in Figure 27 and
Figure 28, you should change to the system configuration shown in Figure 29.

Migrating CICS Parameters to IMS DBCTL
When you migrate to IMS DBCTL, you control some DL/I functions differently from
the CICS local DL/I interface:

v To ensure that CICS does not attempt to initialize the CICS local DL/I interface,
you should modify your CICS system initialization parameters and specify
DLI=NO. If you use the default system initialization table, as recommended in
Chapter 14. Planning the Resource Definitions, DLI=NO is the default. All other
system initialization parameters that relate to CICS local DL/I are ignored when
you specify DLI=NO.

v When you migrate to IMS DBCTL, some of the local DL/I control functions
specified by CICS system initialization parameters are replaced by parameters in:
– The DBCTL system generation macros
– The DRA startup parameter table (DFSPZPxx)
– The DBCTL startup JCL.

Figure 27. Local DL/I Access Direct from an Application-Owning Region

Figure 28. DL/I Access Through Function Shipping to a File-Owning Region

Figure 29. CICS access to IMS databases through the IMS DBCTL interface

110 z/OS V1R1.0 Parallel Sysplex Application Migration

For general information about these topics, see the CICS IMS Database Control
Guide.

Defining the Number of DL/I Threads
When you are using the CICS local DL/I interface, you use the DLTHRED system
initialization parameter to define the number of DL/I threads you want CICS to
provide. When you migrate to DBCTL, you define the number of threads in the
DBCTL stage 1 system generation macros and in the DRA startup parameter table.
In the sysplex environment, where you are cloning terminal-owning regions,
application-owning regions, and the DBCTL subsystems, you should reduce the
number of threads you request for each DBCTL. You should balance the number of
threads in each DBCTL against the number of transactions that you anticipate will
be processed by the application-owning regions attached to each DBCTL. Note,
however, that you cannot similarly reduce the buffers in each DBCTL to the same
extent.

For more information about migrating from CICS local DL/I to DBCTL, see the CICS
IMS Database Control Guide.

Creating Multiple DBCTL Subsystems
You need to create one DBCTL in each MVS image that has CICS
application-owning regions needing access to the IMS databases. To clone DBCTL
subsystems, use the same DBCTL system generation options and the same startup
options.

The CICS Database Resource Adapter Startup Table
The database resource adapter (DRA) startup parameter table is called DFSPZPxx,
where xx is a unique suffix that you define to identify each version of a DRA table.

Each DRA table contains the unique name of the DBCTL subsystem, specified on
the DBCTLID parameter, which is used by CICS to identify the DBCTL to which it
can connect. In CICS/ESA Version 3, you can specify the DBCTLID only in the
DRA table, which means you have to generate a DRA startup parameter table for
each DBCTL in the sysplex. CICS/ESA 4.1 allows you to override the DBCTLID with
the CICS system initialization parameter, INITPARM.

The support in CICS/ESA 4.1 for a generic DRA table enables you to generate one
table for the whole sysplex environment, which you can then use to clone DBCTL
subsystems, overriding the DBCTLID during CICS startup.

The syntax for the INITPARM parameter string for DBCTL is as follows:
INITPARM=(DFHDBCON=‘suffix,dbctlid’)

where:
suffix is the 2-character alphanumeric DRA table suffix and
dbctlid is the 4-character DBCTL name

Naming the DBCTL Subsystems
To identify the different DBCTL subsystems with unique names, and yet be able to
recognize easily which CICS application-owning regions they support, you are
recommended to use a naming convention such as the one described in
“Chapter 3. Planning Naming Conventions for CICS and Related Subsystems” on
page 27. Using the same naming conventions for DBCTL as for CICS makes it easy
to identify subsystem affiliations. If you apply the naming convention to our target

Chapter 11. Planning for IMS DBCTL Multisystem Data Sharing with CICS 111

configuration (see Figure 1 on page 18) where we show the three CICS
application-owning regions in MVSA as DAA1, DAA2, and DAA3, the associated
DBCTL becomes DDA1.

Converting a CICS Shared-Database Program to a BMP Program
Shared database programs can be run only in the local DL/I environment. However,
you can convert shared database programs to IMS batch-oriented batch message
processing (BMP) programs that can then run in the IMS DBCTL environment.
Advantages to converting include:

v Better performance, because BMP programs communicate directly with DBCTL
instead of accessing databases through CICS.

v The ability to use IMS system service requests, such as symbolic checkpoint
(CHKP) and extended restart (XRST).

v Access to GSAM databases. It is better to use GSAM databases instead of
sequential MVS files because, during extended restart the GSAM databases are
repositioned at the record being processed when the checkpoint was written.
GSAM can use BSAM on direct access, unit record, and tape devices, and
VSAM entry sequenced data sets (ESDSs).

v Logging to the IMS log, rather than the CICS logs.

v Access to IMS DEDBs.

Note: An I/O PCB is always present for a BMP program. For a batch program, you
can obtain an I/O PCB by specifying the compatibility option in the IMS
program specification block (PSB) for the program. For more information on
the compatibility option in the PSB, see IMS/ESA Utilities Reference:
System.

Creating the Data Sharing Environment
IMS multisystem data sharing in the sysplex environment requires the use of two
IMS facilities:

v IMS Database Recovery Control (DBRC)

v Internal resource lock manager (IRLM).

You also need the coupling facility.

Database Recovery Control
If you do not currently use DBRC, you must plan for its use in the sysplex
environment.

DBRC runs in its own address space, and is a mandatory component of any
DBCTL subsystem. You specify DBRC in the IMS DB stage 1 system definition
macros.

DBRC is started automatically by DBCTL to control backup, recovery, and access
for all IMS databases that are registered to DBRC. These functions are essential for
data sharing.

DBRC automatically records recovery data on a duplicated recovery control data
set, known as the RECON data set. It also generates and validates the JCL for
backup and recovery jobs using IMS database utilities.

112 z/OS V1R1.0 Parallel Sysplex Application Migration

All databases that participate in data sharing must be registered to DBRC by name
and sharelevel. See the IMS/ESA Operations Guide for information about
registering databases.

Internal Resource Lock Manager (IRLM)
If you do not currently use IRLM, you must plan for its use in the sysplex
environment. IRLM is a resource-locking component of IMS that runs in its own
address space in each MVS image in an IMS data sharing environment. You need
one IRLM per MVS image that contains an IMS subsystem. IRLM is mandatory for
IMS record-level data sharing. IRLM does the following:

v Takes over as lock manager from the program isolation lock manager

v Maintains the integrity of data shared between multiple subsystems

v Acts as a vehicle for the notification of events such as data set extensions, buffer
invalidation (see note), and database backout failures

v Provides support for global commands.

Note: Buffer invalidation is a technique used by IRLM and IMS data sharing
subsystems in a sysplex environment. Buffer invalidation indicates that data
held in a buffer by members of a data sharing group has become invalid as
a result of an update performed by a member of the data sharing group.

See IMS/ESA Installation Volume 1: Installation and Verification for more
information about IRLM.

Defining IMS Coupling Facility Structures
The coupling facility must be installed and defined to MVS before you can use IMS
with data sharing. IMS has three coupling facility structures:
v An IRLM lock table
v An OSAM data cross-invalidation cache
v A VSAM data cross-invalidation cache.

You use coupling facility resource management (CFRM) policies to define coupling
facility structures. A single CFRM policy controls how and where the structure
resources are allocated. See the z/OS MVS Setting Up a Sysplex manual for
information about defining a coupling facility policy and the IMS library for details on
the size and definition of the three IMS structures.

Rebuilding IMS Coupling Facility Structures after Failure
If the coupling facility fails and all structures are lost, IMS automatically rebuilds the
structures and resumes data sharing.

Chapter 11. Planning for IMS DBCTL Multisystem Data Sharing with CICS 113

114 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 12. Planning for DB2 Subsystem Access from CICS
Regions

This chapter discusses some considerations for DB2 data sharing with CICS.

For planning information for DB2 data sharing, see DB2 for MVS/ESA Version 4
Data Sharing: Planning and Administration, SC26-3269.

Creating Multiple DB2 Data Sharing Subsystems
DB2 Version 4 supports data sharing across the sysplex. DB2 data sharing enables
CICS transactions running in any CICS application-owning region to access the
same shared DB2 data.

In the configuration shown in Figure 1 on page 18, we have installed a DB2
subsystem, each with its own IRLM, in each of the MVS images in which there are
CICS application-owning regions (MVSA—MVSD). To enable access to shared DB2
data, each AOR must connect with the DB2 that resides in the same MVS image.

Each DB2 that shares data must belong to a DB2 data sharing group, which is a
collection of one of more DB2 subsystems accessing shared DB2 data. All
members of the data sharing group use the same shared DB2 catalog and
directory.

Using a Common Resource Control Table
You can simplify the task of connecting CICS regions to DB2 subsystems that are
members of a DB2 data sharing group by using a common resource control table
(RCT). With only one RCT, you uniquely identify the DB2 member to which a CICS
region is connecting by specifying the DB2 member subsystem name when you
start the CICS-DB2 connection. You can do this in one of two ways. In each
example, D# identifies the RCT, and DBA1 identifies the DB2 data sharing group
member that runs in MVSA: (Figure 1 on page 18 shows you the configuration with
MVSA.)

1. Specify the suffix of the common RCT and the DB2 member subsystem name
on the CICS DB2 start command (DSNC). For example:
DSNC STRT D#,DBA1

2. Specify the DB2 program, DSN2COM0, as a CICS initialization program in a
program list table (PLT), and pass the required parameters to the DB2 program,
DSN2STRT, in the CICS system initialization parameter, INITPARM. For
example:
INITPARM=(DSN2STRT='D#,DBA1')

Naming the DB2 Subsystems
To uniquely identify the different DB2 subsystems, and also be able to recognize
easily which CICS application-owning regions they are connected to, use a naming
convention such as the one described in “Chapter 3. Planning Naming Conventions
for CICS and Related Subsystems” on page 27. Using the same naming
conventions for DB2 as for CICS makes it easy to identify subsystem affiliations. It
also helps when using facilities such as the MVS automatic restart manager to
identify those subsystems that have an affinity with each other.

© Copyright IBM Corp. 1994, 2001 115

If you apply the naming convention to our target configuration (see Figure 1 on
page 18) where we show the three CICS application-owning regions in MVSA as
DAA1, DAA2, and DAA3, the associated DB2 becomes DBA1.

Creating the Data Sharing Environment
DB2 data sharing in a sysplex requires:

v Coupling facility structures

v Internal resource lock manager (IRLM)

Defining DB2 Coupling Facility Structures
At least one coupling facility must be installed and defined to MVS before you can
use DB2 data sharing. DB2 uses these coupling facility structures:

v A single lock structure for each data sharing group, used to control locking.

v A single list structure for each data sharing group, used for intra-group
communications and for storing status information about databases. DB2 calls
this structure the shared communications area (SCA).

v Multiple cache structures for each data sharing group, used for caching and
cross-invalidating data. DB2 calls these group buffer pools.

Use the MVS coupling facility resource management (CFRM) policies to define
these structures to the sysplex. A CFRM policy determines how and where the
structure resources are allocated. See z/OS MVS Setting Up a Sysplex for
information about how to create a CFRM policy.

For information about how to name the structures and how to estimate their sizes,
see DB2 for MVS/ESA Version 4 Data Sharing: Planning and Administration.

Rebuilding DB2 Coupling Facility Structures after Failure
If a coupling facility fails, the SCA and lock structure are automatically rebuilt on
another coupling facility, assuming you have made provisions for automatic rebuild
on another coupling facility. When these crucial structures are rebuilt, data sharing
continues.

DB2 does not rebuild group buffer pools; instead, DB2 uses information from the
DB2 logs to recover the data that was in the failed group buffer pool.

In the meantime, MVS reallocates the group buffer pool structure in an active
coupling facility so that data sharing can continue.

Internal Resource Lock Manager (IRLM)
IRLM is the resource-locking component of DB2 that runs in its own address space.
Each DB2 must have its own IRLM.

IRLM controls global locking of data shared between multiple DB2s in the data
sharing group. It interacts with the coupling facility to ensure that a transaction lock
used by one DB2 is not in conflict with a transaction lock used by another DB2.

IRLM also controls the information that DB2 needs for buffer coherency, the
mechanism by which DB2 ensures that an application never reads down-level data.

For more information about installing and tuning IRLM, see DB2 for MVS/ESA
Version 4 Data Sharing: Planning and Administration.

116 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 13. Planning the Log Streams

In CICS/ESA 4.1 and earlier, CICS logging and journaling is performed by the CICS
journal control management function, which uses sequential data sets supported by
an automatic archiving facility. In CICS 5.1, the earlier journal control management
function is replaced by the CICS log manager which, instead of sequential data
sets, uses the MVS system logger for all its logging and journaling requirements.
Using services provided by the MVS system logger, the CICS log manager
supports:

v The CICS system log, which is used for transaction backout, emergency restart,
and preserving information for resynchronizing in-doubt units-of-work, even on a
cold start. There is no internal dynamic log in CICS 5.1 as in earlier releases of
CICS—the system log is used for all transaction backout.

v Forward recovery logs, auto-journals, user journals, and a log of logs. These are
collectively referred to as general logs to distinguish them from system logs.

Migrating to CICS 5.1 requires careful planning to define all your existing CICS
logging and journal requirements to the MVS system logger and CICS log manager.

Note: For CICS logging, you can use either the coupling facility, DASD-only, or
both the coupling facility and DASD. This book describes the MVS system
logger and the use of the coupling facility for CICS. For DASD-only logging,
you must have OS/390 V2 R4 or higher installed. For information on
DASD-only logging, see z/OS MVS Setting Up a Sysplex.

The MVS System Logger and the CICS Log Manager
Before planning the migration to the logger environment, it is important to
understand the facilities supported by the MVS system logger and the CICS log
manager, and how these have replaced those supported by the obsolete CICS
journal control program.

Log streams
A sequence of data blocks, with each log stream identified by its own log
stream identifier—the log stream name (LSN). Each log stream is written by the
MVS system logger to a specified list structure in the coupling facility.

The CICS system log, forward recovery logs, autojournals, log of logs, and user
journals map onto specific MVS log streams.

MVS log streams replace the CICS journal data sets.

Log stream data sets
Auxiliary storage on DASD for log streams. When a coupling facility list
structure is filled to its high offload threshold point or beyond, the MVS system
logger begins offloading data from the coupling facility to the DASD log stream
data sets.

See the z/OS MVS Setting Up a Sysplex for information about the offload
threshold parameter.

LOGR couple data set
The couple data set that holds the MVS system logger policy information,
accessible by all the systems in the sysplex.

Defining the LOGR data set and its policy information is one of the first tasks
you must complete when preparing to migrate to an MVS system logger

© Copyright IBM Corp. 1994, 2001 117

environment. See the z/OS MVS Setting Up a Sysplex for information about the
LOGR couple data set and CFRM policies.

Coupling facility list structure definitions
These define all the list structures used by the MVS system logger, that are
referenced by log stream definitions. See the z/OS MVS Setting Up a Sysplex
for information about the LOGR couple data set and CFRM policies.

Log stream definitions
These define all the log streams, including log stream models, that are
referenced by the CICS log manager. Log streams are written to a specified list
structure within coupling facility.

You define log streams using the MVS administrative data utility, IXCMIAPU.
See the z/OS MVS Setting Up a Sysplex for information about the IXCMIAPU
utility.

Journal names
In general, CICS regions refer to their system logs and general logs by an
internal 8-character journal name. For example, the internal name for the CICS
system log is DFHLOG, and general logs are identified by journal names of the
form DFHJnn, where nn is a number in the range 01 through 99. CICS maps its
internal 8-character journal names to MVS log streams by user-defined
JOURNALMODEL resource definitions, in which you specify the journal name
and the corresponding log stream name.

The JOURNALMODEL resource definition replaces entries in the journal control
table, which is obsolete.

An exception to the general rule is where the fully-qualified 44-character log
stream name for a VSAM forward recovery log is obtained directly from the ICF
catalog.

JOURNALMODEL resource definitions
These define the journal names and their corresponding log stream names. You
define these in the CICS system definition (CSD) data set.

The use of these resource definitions is optional. If you don’t specify journal
models, CICS constructs default log stream names using its region userid,
applid, and the journal name.

Coupling Facility Requirements for the System Logger
The MVS system logger requires a coupling facility running coupling facility control
code (CFCC) at service level 4.03 (CFLEVEL=1) or higher.

For information about the coupling facility and CFLEVEL, see PR/SM Planning
Guide. .

Defining the logger environment for CICS
To plan your migration to the CICS log manager, you need the following
publications:

z/OS MVS Setting Up a Sysplex, SA22-7625
This book provides information on how to complete the following tasks:

1. Defining the LOGR couple data set and making it available to the sysplex.

2. Defining the CFRM LOGR policy.

3. Defining coupling facility list structures, with each list structure designed to
hold one or more log streams.

118 z/OS V1R1.0 Parallel Sysplex Application Migration

4. Defining explicit log streams, and log stream models for reference by CICS
regions when creating log streams dynamically.

CICS Transaction Server for OS/390 Installation Guide, GC34-5697
This book provides information on the following topics:

v Requirements. It describes the hardware and software requirements for the
CICS log manager.

v Setting up the environment for the CICS log manager. It outlines the
tasks to be performed and the order in which they must be completed.
Where appropriate, this topic refers to the z/OS MVS Setting Up a Sysplex.

v Planning guidelines for CICS log streams. It includes information about
coupling facilities and defining coupling facility structures for log streams.

The CICS Transaction Server for OS/390 Installation Guide also provides
sample JCL to define log stream structures using the IXCMIAPU
administrative data utility.

v Calculating log structure parameter values. CICS provides a utility
program, DFHLSCU, to help you calculate values for the AVGBUFSIZE,
INITSIZE, SIZE, and STG_SIZE parameters:
– AVGBUFSIZE is a parameter on the DEFINE STRUCTURE specification
– SIZE and INITSIZE are parameters on the IXCMIAPU CFRM policy

specification
– STG_SIZE is a parameter on the DEFINE LOGSTREAM specification.

Where the DFHLSCU utility is not appropriate, the CICS Transaction Server
for OS/390 Installation Guide also provides a number of formulae to help you
calculate parameter values.

v Naming conventions. Log structure naming conventions are
recommmended for CICS log streams.

v Staging data sets. Recommendations for the use of staging data sets for
CICS log streams.

CICS System Definition Guide, SC34-5725
This book provides information about:
v Defining CICS system logs
v Defining CICS general log journals
v Journal naming
v How CICS logs and journals map onto MVS system logger log streams
v The CICS journal utility program, DFHJUP

CICS Operations and Utilities Guide, SC34-5717
This book provides information on how to use the DFHLSCU utility program.

Chapter 13. Planning the Log Streams 119

120 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 14. Planning the Resource Definitions

This chapter gives examples of some of the key resource definitions needed to
support dynamic transaction routing (DTR) across a sysplex. (These examples are
based on the naming convention described in “The Naming Convention” on
page 31.) It also discusses standard procedures and techniques for cloning CICS
regions in a sysplex environment. The main topics are:

v Defining remote attributes for transaction routing
– Defining transactions for static transaction routing
– Defining transactions for dynamic transaction routing

v Defining connections and sessions for the MRO links
– TOR—AOR links
– AOR—FOR links
– AOR—QOR links

When setting up an MRO transaction routing environment, one of the first steps is
to decide on the type of transaction routing that you want for each of your
transactions. Remote attributes must be specified for each transaction that is to be
routed to a remote system by a TOR. You must decide whether transactions are to
be dynamically routed by a dynamic transaction routing program, or statically routed
according to the resource definition attributes.

Static routing is the easier to implement, and does not require a dynamic
transaction routing program, or any of the other supporting features of a dynamic
transaction routing environment. However, static transaction routing precludes the
workload balancing and high-availability benefits you can obtain by being able to
choose the target AOR dynamically, and you are recommended to specify the
dynamic option whenever possible.

Defining Remote Attributes for Transaction Routing
The attributes of a transaction resource definition that control transaction routing are
shown on the CEDA DEFINE panel under the heading “REMOTE ATTRIBUTES”
(see Figure 30 on page 123 for an example).

If you specify DYNAMIC(NO), CICS routes the transaction to the AOR specified on
the REMOTESYSTEM parameter.

Note: CICS also assumes dynamic routing by default if you omit a transaction
definition. In this case, CICS uses the attributes of a default DTR definition
whose transaction id you specify on the DTRTRAN system initialization
parameter, and which defaults to the CICS-supplied definition, CRTX, if you
omit the system initialization parameter.

If you specify DYNAMIC(YES) on a transaction resource definition, CICS routes the
transaction to the AOR dynamically selected by a dynamic transaction routing
program.

Defining Transactions for Static Transaction Routing
To define a transaction for static transaction routing, specify the remote attributes as
follows:

DYNAMIC
Omit this parameter for static routing—it takes the value NO by default.

© Copyright IBM Corp. 1994, 2001 121

REMOTESYSTEM
Specify the name of the remote CICS region to which the TOR is to route the
transaction.

Note that when you specify a remote system name for use in the TOR, you can
use the same definition in the AOR provided you also specify a program name
for the transaction. (A program name is not required for a remote-only
transaction definition.) A definition that can be used for both local and remote
purposes is described as a dual-purpose resource definition, which is explained
in the CICS Resource Definition Guide. When CICS installs a dual-purpose
transaction definition in both the terminal-owning region and the
application-owning region, CICS compares its own system name (taken from
the SYSIDNT system initialization parameter) with the REMOTESYSTEM name
in the definition, with the following result:
v If the names are different, CICS creates a remote transaction definition.
v If the names are the same, CICS creates a local transaction definition.

REMOTENAME
Specify a remote name on this parameter when the transaction is known by a
different name in the remote system.

If you don’t specify a remote name, CICS assumes the transaction is known by
the same name in the local and remote regions, and the parameter defaults to
the name of the local transaction.

The remainder of the remote attributes can be defined for both static and dynamic
transaction routing, and are described in the CICS Resource Definition Guide.

An example of a completed CEDA panel for a static transaction routing definition is
shown in Figure 30 on page 123.

Recommendations
In general, you should use static routing only for those transactions that are not
suitable candidates for dynamic transaction routing. For example, if you have
transactions that create global intertransaction affinity with a permanent lifetime, or
transactions that have transaction-system affinity, you are recommended to choose
static routing. In the interests of workload balancing, you should aim to keep static
routing to a minimum.

See the CICS Application Programming Guide manual for information about the
constraints imposed by transaction affinities in a dynamic transaction routing
environment.

122 z/OS V1R1.0 Parallel Sysplex Application Migration

Defining Transactions for Dynamic Transaction Routing
There are two methods of indicating to CICS that a transaction is to be dynamically
routed.

1. Omitting specific transaction definitions altogether from the terminal-owning
regions—this is the recommended method.

2. Specifying dynamic on specific transaction definitions—supported for
compatibility with earlier releases.

No Transaction Definitions in the Terminal-Owning Regions
The easiest method of specifying dynamic transaction routing in a TOR is to omit
specific transaction resource definitions altogether.

When CICS receives a transaction that it cannot find in the table of installed
transaction resource definitions, CICS uses a special DTR resource definition. You
can specify the name of this dynamic transaction routing definition on the
DTRTRAN system initialization parameter, which defaults to the CICS-supplied
transaction, CRTX.

In the absence of a specific definition for a transaction, CICS attaches the
transaction using the attributes from the DTRTRAN-specified transaction, and calls
the dynamic transaction routing program to determine to which remote system the
transaction is to be routed.

The dynamic transaction routing program can choose to police the transactions
itself and for unknown transactions could simply return control to CICS, in which
case CICS rejects the transaction as unknown. A better approach might be to let
the dynamic transaction routing program simply route the transaction to any one of
the cloned application-owning regions, and let the application-owning region reject
the transaction as unknown. In each case the terminal operator sees the standard
CICS message reporting that ‘Transaction ... is unrecognized’.

OBJECT CHARACTERISTICS CICS RELEASE = 0330
CEDA View
TRansaction : AC20
Group : DFH$CTXT
DEscription : Display PRIMARY PANEL of the CICS CUA Sample Application
PROGram : DFH0VT1
. :
. :

REMOTE ATTRIBUTES
DYnamic : NO No | Yes
REMOTESystem : CICA
REMOTEName : AC20
TRProf : DFHCICSS
Localq : No | Yes
SCHEDULING

. : 001
ALIASES
Alias : ac20
. :

APPLID=CICSTOR

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 30. A Remote Transaction Resource Definition that Specifies Static Routing

Chapter 14. Planning the Resource Definitions 123

Omitting specific transaction definitions from the terminal-owning regions is the
recommended method for dynamic transaction routing. It reduces system
administration effort in maintaining transaction resource definitions, and significantly
reduces the size of the transaction table needed in terminal-owning regions. It not
only removes the need to define new transactions for dynamic transaction routing, it
avoids the need to modify all your existing definitions.

Note: See “Chapter 15. Planning CICSplex Security” on page 137 for information
about transaction attach security checks for transactions attached using the
DTRTAN transaction.

For general information dynamic transaction routing see the CICS
Intercommunication Guide.

For information about writing a dynamic transaction routing program, see the CICS
Customization Guide.

Defining specific transaction definitions
If you have specific transaction definitions that you use in your terminal-owning
regions, you can continue to use them.

If you want to use these for dynamic transaction routing, specify the remote
attributes as follows:

DYNAMIC
Specify DYNAMIC(YES) for dynamic transaction routing.

REMOTESYSTEM
Leave this blank unless you want to specify a default remote system.

Normally, with DYNAMIC(YES) defined, the dynamic transaction routing
program selects the remote system to which CICS is to route the transaction.
However, CICS always passes to the dynamic transaction routing program (via
its COMMAREA) a default remote system name. If you leave the remote
system name blank, CICS passes its own SYSIDNT value as the default
“remote” name, which means that, by default, the transaction runs locally.

REMOTENAME
Specify a remote name for the transaction on this parameter when the
transaction is known by a different name in the remote system.

If you don’t specify a remote transaction name, CICS assumes the transaction
is known by the same name in the local and remote regions, and the parameter
defaults to the name of the local transaction. The remote name is passed to the
dynamic transaction routing program (via the COMMAREA), and can be varied
dynamically by the dynamic transaction routing program if the transaction is
known by a different name in the remote system.

PROGRAM
You must specify a program name for a DYNAMIC(YES) transaction. This
ensures that, if the transaction is not dynamically routed and CICS has to run it
locally, CICS knows which application program to invoke.

See Figure 31 on page 125 for an example of a completed CEDA panel for a
dynamic transaction routing definition.

124 z/OS V1R1.0 Parallel Sysplex Application Migration

Defining Connection and Session Definitions
The CICSplex in our target configuration shown in Figure 1 on page 18 requires a
number of connection and sessions definitions for MRO. These can be kept to a
minimum by adopting the naming conventions described in “Chapter 3. Planning
Naming Conventions for CICS and Related Subsystems” on page 27.

As a general rule, you need to create one connection definition, with its supporting
sessions definitions, for each CICS region that is linked-to by another CICS region.
You can then install that same definition in all the CICS regions that need to link to
the CICS region defined by the connection.

By carefully grouping resource definitions, you can install the same CSD groups of
definitions in many CICS regions.

The required resource definitions are summarized in the following sections.

Note: In the examples of SESSIONS resource definitions that follow, we show how
to specify the session names using the old send and receive prefix method,
based on the naming recommendations in “Chapter 3. Planning Naming
Conventions for CICS and Related Subsystems” on page 27. The
recommended way is to omit these prefixes and let CICS allocate them
dynamically.

See the CICS Resource Definition Guide for information about defining
CONNECTION and SESSIONS resource definitions.

Links from the Terminal-Owning Regions
In our target CICSplex, each terminal-owning region requires an MRO connection
definition, with supporting sessions, for each application-owning region—a total of
12 of each definition. By creating one generic resource group in the CSD to define

OBJECT CHARACTERISTICS CICS RELEASE = 0330
CEDA View
TRansaction : AC20
Group : DFH$CTXT
DEscription : PRIMARY PANEL of the CICS CUA Sample Application
PROGram : DFH0VT1
. :
. :

REMOTE ATTRIBUTES
DYnamic : YES No | Yes
REMOTESystem :
REMOTEName : AC20
TRProf : DFHCICSS
Localq : No | Yes
SCHEDULING

. : 001
ALIASES
Alias : ac20
. :

APPLID=CICSTOR

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 31. A Remote Transaction Resource Definition that Specifies Dynamic Routing

Chapter 14. Planning the Resource Definitions 125

all 12 connections and sessions, the same definitions can be installed in each TOR.
In this example, we have used the # character as a generic symbol, to create
CONNDT## as the CSD group name, where:

CONN indicates the resource type (CONNections and sessions).

D identifies the Dallas CICSplex.

T indicates the type of region in which the resource is installed (the
terminal-owning regions in this case).

indicates a generic group that can be installed in more than one region.

Using this technique, the group can be installed in any terminal-owning region that
requires a connection to the same set of application-owning regions, making it a
simple matter to add another terminal-owning region with links to the same set of
application-owning regions, or to add the definition required in terminal-owning
region when a new application-owning region is added to the CICSplex.

The definitions required for these links (illustrated in Figure 32) are given in
Figure 33 on page 127.

Figure 32. Required Links to the Application-Owning Regions from the Terminal-Owning
Regions. There are 12 in total, one to each of the application-owning regions that support
transaction routing.

126 z/OS V1R1.0 Parallel Sysplex Application Migration

** CONNECTION Definitions from all TORs to the 12 target AORs.
**
DEFINE CONNECTION(DAA1) GROUP(CONNDT##)

NETNAME(CICSDAA1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAA1 from any TOR in the 'D' CICSplex) ...

*
DEFINE CONNECTION(DAA2) GROUP(CONNDT##)

NETNAME(CICSDAA2) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAA2 from any TOR in the 'D' CICSplex) ...

*
DEFINE CONNECTION(DAA3) GROUP(CONNDT##)

NETNAME(CICSDAA3) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAA3 from any TOR in the 'D' CICSplex) ...

*
DEFINE CONNECTION(DAB1) GROUP(CONNDT##)

NETNAME(CICSDAB1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAB1 from any TOR in the 'D' CICSplex) ...

*
DEFINE CONNECTION(DAB2) GROUP(CONNDT##)

NETNAME(CICSDAB2) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAB2 from any TOR in the 'D' CICSplex) ...

*
DEFINE CONNECTION(DAB3) GROUP(CONNDT##)

NETNAME(CICSDAB3) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAB3 from any TOR in the 'D' CICSplex) ...

*
DEFINE CONNECTION(DAC1) GROUP(CONNDT##)

NETNAME(CICSDAC1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAC1 from any TOR in the 'D' CICSplex) ...

*
DEFINE CONNECTION(DAC2) GROUP(CONNDT##)

NETNAME(CICSDAC2) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAC2 from any TOR in the 'D' CICSplex) ...

*
DEFINE CONNECTION(DAC3) GROUP(CONNDT##)

NETNAME(CICSDAC3) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAC3 from any TOR in the 'D' CICSplex) ...

*
DEFINE CONNECTION(DAD1) GROUP(CONNDT##)

NETNAME(CICSDAD1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAD1 from any TOR in the 'D' CICSplex) ...

*
DEFINE CONNECTION(DAD2) GROUP(CONNDT##)

NETNAME(CICSDAD2) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAD2 from any TOR in the 'D' CICSplex) ...

*
DEFINE CONNECTION(DAD3) GROUP(CONNDT##)

NETNAME(CICSDAD3) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(MRO link to DAD3 from any TOR in the 'D' CICSplex) ...

Figure 33. Resource Definitions for Links from Terminal-Owning Regions to Application-Owning Regions (Part 1 of 3).
These define the links from a terminal-owning region to each of the transaction routing application-owning regions
shown in the target configuration in Figure 1 on page 18. The definitions are the same for all the terminal-owning
regions, and therefore can be included in the startup group list for each TOR, using the generic CSD GROUP name
CONNDT##.

Chapter 14. Planning the Resource Definitions 127

** SESSIONS Definitions from the 4 TORs to the 12 AORs.
**
DEFINE SESSIONS(DAA1Y1Z1) GROUP(CONNDT##)

CONNECTION(DAA1) PROTOCOL(LU61)
SENDPFX(Y1) RECEIVEPFX(Z1) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAA1) ...

*
DEFINE SESSIONS(DAA2Y2Z2) GROUP(CONNDT##)

CONNECTION(DAA2) PROTOCOL(LU61)
SENDPFX(Y2) RECEIVEPFX(Z2) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAA2) ...

*
DEFINE SESSIONS(DAA3Y3Z3) GROUP(CONNDT##)

CONNECTION(DAA3) PROTOCOL(LU61)
SENDPFX(Y3) RECEIVEPFX(Z3) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAA3) ...

*
DEFINE SESSIONS(DAB1Y4Z4) GROUP(CONNDT##)

CONNECTION(DAB1) PROTOCOL(LU61)
SENDPFX(Y4) RECEIVEPFX(Z4) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAB1) ...

*
DEFINE SESSIONS(DAB2Y5Z5) GROUP(CONNDT##)

CONNECTION(DAB2) PROTOCOL(LU61)
SENDPFX(Y5) RECEIVEPFX(Z5) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAB2) ...

*
DEFINE SESSIONS(DAB3Y6Z6) GROUP(CONNDT##)

CONNECTION(DAB3) PROTOCOL(LU61)
SENDPFX(Y6) RECEIVEPFX(Z6) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAB3) ...

*
DEFINE SESSIONS(DAC1Y7Z7) GROUP(CONNDT##)

CONNECTION(DAC1) PROTOCOL(LU61)
SENDPFX(Y7) RECEIVEPFX(Z7) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAC1) ...

*
DEFINE SESSIONS(DAC2Y8Z8) GROUP(CONNDT##)

CONNECTION(DAC2) PROTOCOL(LU61)
SENDPFX(Y8) RECEIVEPFX(Z8) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAC2) ...

*
DEFINE SESSIONS(DAC3Y9Z9) GROUP(CONNDT##)

CONNECTION(DAC3) PROTOCOL(LU61)
SENDPFX(Y9) RECEIVEPFX(Z9) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAC3) ...

*
DEFINE SESSIONS(DAD1YAZA) GROUP(CONNDT##)

CONNECTION(DAD1) PROTOCOL(LU61)
SENDPFX(YA) RECEIVEPFX(ZA) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAD1) ...

Figure 33. Resource Definitions for Links from Terminal-Owning Regions to Application-Owning Regions (Part 2 of 3).
These define the links from a terminal-owning region to each of the transaction routing application-owning regions
shown in the target configuration in Figure 1 on page 18. The definitions are the same for all the terminal-owning
regions, and therefore can be included in the startup group list for each TOR, using the generic CSD GROUP name
CONNDT##.

128 z/OS V1R1.0 Parallel Sysplex Application Migration

Links from the Application-Owning Regions

For the links shown in Figure 34, each of the 12 application-owning regions that
supports transaction routing and function shipping requires the following connection
and session definitions:

v A connection definition, with supporting sessions, to each terminal-owning
region—a total of 4 of each resource type.

v A connection definition, with supporting sessions, to the file-owning region—one
only of each resource type.

v A connection definition, with supporting sessions, to the queue-owning
region—one only of each resource type.

*
DEFINE SESSIONS(DAD2YBZB) GROUP(CONNDT##)

CONNECTION(DAD2) PROTOCOL(LU61)
SENDPFX(YB) RECEIVEPFX(ZB) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAD1) ...

*
DEFINE SESSIONS(DAD3YCZC) GROUP(CONNDT##)

CONNECTION(DAD3) PROTOCOL(LU61)
SENDPFX(YC) RECEIVEPFX(ZC) SENDCOUNT(10)
RECEIVECOUNT(10) DESC(Down sessions with DAD1) ...

Figure 33. Resource Definitions for Links from Terminal-Owning Regions to Application-Owning Regions (Part 3 of 3).
These define the links from a terminal-owning region to each of the transaction routing application-owning regions
shown in the target configuration in Figure 1 on page 18. The definitions are the same for all the terminal-owning
regions, and therefore can be included in the startup group list for each TOR, using the generic CSD GROUP name
CONNDT##.

Figure 34. Required Links, 6 in all, from Application-Owning Regions to the Terminal-Owning
Regions and Resource-Owning Regions

Chapter 14. Planning the Resource Definitions 129

By creating one generic resource group in the CSD to define all the connections
and sessions, the same definitions can be installed in each application-owning
region. In this example, we have chosen CONNDA## as the CSD group name,
where:

CONN indicates the resource type (CONNections and sessions).

D identifies the Dallas CICSplex.

A indicates the type of region in which the resource is installed (an
application-owning region).

indicates a generic group that can be installed in more than one region (an
application-owning region in this case).

The definitions required for our example configuration are shown in Figure 35.

** CONNECTION Definitions from any AOR to the TORs, FOR and QOR
**
DEFINE CONNECTION(DTA1) GROUP(CONNDA##)

NETNAME(CICSDTA1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DTA1 from any AOR. in the 'D' CICSplex.) ...

*
DEFINE CONNECTION(DTB1) GROUP(CONNDA##)

NETNAME(CICSDTB1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DTB1 from any AOR. in the 'D' CICSplex.) ...

*
DEFINE CONNECTION(DTC1) GROUP(CONNDA##)

NETNAME(CICSDTC1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DTC1 from any AOR. in the 'D' CICSplex.) ...

*
DEFINE CONNECTION(DTD1) GROUP(CONNDA##)

NETNAME(CICSDTD1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DTD1 from any AOR. in the 'D' CICSplex.) ...

*
DEFINE CONNECTION(DFA1) GROUP(CONNDA##)

NETNAME(CICSDFA1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DFA1 from any AOR. in the 'D' CICSplex.) ...

*
DEFINE CONNECTION(DQC1) GROUP(CONNDA##)

NETNAME(CICSDQC1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DQC1 from any AOR. in the 'D' CICSplex.) ...

**
** SESSIONS Definitions from any AOR to the TORs, FOR and QOR
**
DEFINE SESSIONS(DTA1W1X1) GROUP(CONNDA##)

CONNECTION(DTA1) PROTOCOL(LU61)
SENDPFX(W1) RECEIVEPFX(X1) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(Up sessions with DTA1) ...

*
DEFINE SESSIONS(DTB1W2X2) GROUP(CONNDA##)

CONNECTION(DTB1) PROTOCOL(LU61)
SENDPFX(W2) RECEIVEPFX(X2) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(Up sessions with DTB1) ...

Figure 35. Resource Definitions for Links from the Application-Owning Regions to Terminal-Owning Regions and
Resource-Owning Regions (Part 1 of 2). These define the links from each application-owning region shown in Figure 1
on page 18. These definitions are the same for all the AORs, and can be included in their start-up group lists, using
the generic CSD GROUP name CONNDA##.

130 z/OS V1R1.0 Parallel Sysplex Application Migration

Links from the File-Owning and Queue-Owning Regions

Each file-owning and queue-owning region requires a connection definition, with
supporting sessions, to each application-owning region—a total of 12 of each
definition type, as shown in Figure 36. By creating one generic resource group
name in the CSD to define all 12 connections and sessions, the same definitions
can be installed in the file-owning region and queue-owning region.

Note: The definitions you need to install in these regions to connect to the
application-owning regions are the same, except for the session counts, as
those you need to install in the terminal-owning regions (CSD group
CONNDT## in these examples). However, if you are using the old-style
prefix-naming for the sessions, you should create a separate group to define
different session names (using the “up” convention letters instead of “down”
as in CONNDT##). If you are leaving the send and receive prefixes blank
and letting CICS allocate the session names, you could copy the same basic
resource definitions, and modify them to set an appropriate number of SEND
and RECEIVE sessions.

*
DEFINE SESSIONS(DTC1W3X3) GROUP(CONNDA##)

CONNECTION(DTC1) PROTOCOL(LU61)
SENDPFX(W3) RECEIVEPFX(X3) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(Up sessions with DTC1) ...

*
DEFINE SESSIONS(DTD1W4X4) GROUP(CONNDA##)

CONNECTION(DTD1) PROTOCOL(LU61)
SENDPFX(W4) RECEIVEPFX(X4) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(Up sessions with DTD1) ...

*
DEFINE SESSIONS(DFA1Y1Z1) GROUP(CONNDA##)

CONNECTION(DFA1) PROTOCOL(LU61)
SENDPFX(Y1) RECEIVEPFX(Z1) SENDCOUNT(40)
RECEIVECOUNT(10) DESC(Down sessions with DFA1) ...

*
DEFINE SESSIONS(DQC1Y2Z2) GROUP(CONNDA##)

CONNECTION(DQC1) PROTOCOL(LU61)
SENDPFX(Y2) RECEIVEPFX(Z2) SENDCOUNT(40)
RECEIVECOUNT(10) DESC(Down sessions with DQC1) ...

Figure 35. Resource Definitions for Links from the Application-Owning Regions to Terminal-Owning Regions and
Resource-Owning Regions (Part 2 of 2). These define the links from each application-owning region shown in Figure 1
on page 18. These definitions are the same for all the AORs, and can be included in their start-up group lists, using
the generic CSD GROUP name CONNDA##.

Figure 36. Required Links, 12 in All, from File-Owning and Queue-Owning Regions to All
Application-Owning Regions

Chapter 14. Planning the Resource Definitions 131

In this example, we have chosen to create a separate group with CONNDR## as
the CSD group name, where:

CONN indicates the resource type (CONNections and sessions).

D identifies the Dallas CICSplex.

R indicates the type of region in which the resource is installed,
(resource-owning regions).

indicates a generic group that can be installed in more than one region.

Using this technique, the group can be installed in any resource-owning region that
requires a connection to the same set of application-owning regions, making it easy
to add another resource-owning region.

The definitions required for these links (illustrated in Figure 36 on page 131) are
given in Figure 37.

** CONNECTION Definitions from DFA1 and DQC1 to all the AORs.
**
DEFINE CONNECTION(DAA1) GROUP(CONNDR##)

NETNAME(CICSDAA1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAA1 from DFA1 and DQC1) ...

*
DEFINE CONNECTION(DAA2) GROUP(CONNDR##)

NETNAME(CICSDAA2) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAA2 from DFA1 and DQC1.) ...

*
DEFINE CONNECTION(DAA3) GROUP(CONNDR##)

NETNAME(CICSDAA3) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAA3 from DFA1 and DQC1.) ...

*
DEFINE CONNECTION(DAB1) GROUP(CONNDR##)

NETNAME(CICSDAB1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAB1 from DFA1 and DQC1.) ...

*
DEFINE CONNECTION(DAB2) GROUP(CONNDR##)

NETNAME(CICSDAB2) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAB2 from DFA1 and DQC1.) ...

*
DEFINE CONNECTION(DAB3) GROUP(CONNDR##)

NETNAME(CICSDAB3) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAB3 from DFA1 and DQC1.) ...

Figure 37. Resource Definitions for Links from File-Owning and Queue-Owning Regions (Part 1 of 3). These define the
links from the file-owning and queue-owning regions to all the application-owning regions shown in Figure 1 on
page 18. The definitions are the same for both regions, and therefore can be included in the startup group list for
each, using the generic CSD GROUP name, CONNDR##.

132 z/OS V1R1.0 Parallel Sysplex Application Migration

DEFINE CONNECTION(DAC1) GROUP(CONNDR##)
NETNAME(CICSDAC1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAC1 from DFA1 and DQC1.) ...

*
DEFINE CONNECTION(DAC2) GROUP(CONNDR##)

NETNAME(CICSDAC2) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAC2 from DFA1 and DQC1.) ...

*
DEFINE CONNECTION(DAC3) GROUP(CONNDR##)

NETNAME(CICSDAC3) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAC3 from DFA1 and DQC1.) ...

*
DEFINE CONNECTION(DAD1) GROUP(CONNDR##)

NETNAME(CICSDAD1) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAD1 from DFA1 and DQC1.) ...

*
DEFINE CONNECTION(DAD2) GROUP(CONNDR##)

NETNAME(CICSDAD2) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAD2 from DFA1 and DQC1.) ...

*
DEFINE CONNECTION(DAD3) GROUP(CONNDR##)

NETNAME(CICSDAD3) ACCESSMETHOD(XM) INSERVICE(YES)
DESC(Link to DAD3 from DFA1 and DQC1.) ...

**
** SESSIONS Definitions from DFA1 and DQC1 to all the AORs.
**
DEFINE SESSIONS(DAA1W1X1) GROUP(CONNDR##)

CONNECTION(DAA1) PROTOCOL(LU61)
SENDPFX(W1) RECEIVEPFX(X1) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(UP sessions with DAA1) ...

*
DEFINE SESSIONS(DAA2W2X2) GROUP(CONNDR##)

CONNECTION(DAA2) PROTOCOL(LU61)
SENDPFX(W2) RECEIVEPFX(X2) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(UP sessions with DAA2) ...

*
DEFINE SESSIONS(DAA3W3X3) GROUP(CONNDR##)

CONNECTION(DAA3) PROTOCOL(LU61)
SENDPFX(W3) RECEIVEPFX(X3) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(UP sessions with DAA3) ...

*
DEFINE SESSIONS(DAB1W4X4) GROUP(CONNDR##)

CONNECTION(DAB1) PROTOCOL(LU61)
SENDPFX(W4) RECEIVEPFX(X4) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(UP sessions with DAB1) ...

*
DEFINE SESSIONS(DAB2W5X5) GROUP(CONNDR##)

CONNECTION(DAB2) PROTOCOL(LU61)
SENDPFX(W5) RECEIVEPFX(X5) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(UP sessions with DAB2) ...

Figure 37. Resource Definitions for Links from File-Owning and Queue-Owning Regions (Part 2 of 3). These define the
links from the file-owning and queue-owning regions to all the application-owning regions shown in Figure 1 on
page 18. The definitions are the same for both regions, and therefore can be included in the startup group list for
each, using the generic CSD GROUP name, CONNDR##.

Chapter 14. Planning the Resource Definitions 133

Cloning CICS Regions
Generating a number of identical CICS regions (clones) to support workload
management in a dynamic transaction routing environment means initializing the
clone regions with the same resource definitions. You can create clones by
specifying the same system initialization parameters and, through the system
initialization parameters, specify the same resource definitions.

Using the sysplex target configuration described in “Chapter 2. Planning the
Subsystem Configuration for a Sysplex” on page 17 as an example, here are some
guidelines for cloning CICS regions.

Cloning Regions of the Same Type
As a general rule, you can clone only those regions that are of the same type; that
is, sets of terminal-owning regions, sets of application-owning regions, and so on.

Defining Common System Initialization Parameters
For each set of clones, define a common set of system initialization parameters that
apply to all the CICS clones in the set.

DEFINE SESSIONS(DAB3W6X6) GROUP(CONNDR##)
CONNECTION(DAB3) PROTOCOL(LU61)
SENDPFX(W6) RECEIVEPFX(X6) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(Up sessions with DAB3) ...

*
DEFINE SESSIONS(DAC1W7X7) GROUP(CONNDR##)

CONNECTION(DAC1) PROTOCOL(LU61)
SENDPFX(W7) RECEIVEPFX(X7) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(Up sessions with DAC1) ...

*
DEFINE SESSIONS(DAC2W8X8) GROUP(CONNDR##)

CONNECTION(DAC2) PROTOCOL(LU61)
SENDPFX(W8) RECEIVEPFX(X8) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(Up sessions with DAC2) ...

*
DEFINE SESSIONS(DAC3W9X9) GROUP(CONNDR##)

CONNECTION(DAC3) PROTOCOL(LU61)
SENDPFX(W9) RECEIVEPFX(X9) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(Up sessions with DAC3) ...

*
DEFINE SESSIONS(DAD1WAXA) GROUP(CONNDR##)

CONNECTION(DAD1) PROTOCOL(LU61)
SENDPFX(WA) RECEIVEPFX(XA) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(Up sessions with DAD1) ...

*
DEFINE SESSIONS(DAD2WBXB) GROUP(CONNDR##)

CONNECTION(DAD2) PROTOCOL(LU61)
SENDPFX(WB) RECEIVEPFX(XB) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(Up sessions with DAD2) ...

*
DEFINE SESSIONS(DAD3WCXC) GROUP(CONNDR##)

CONNECTION(DAD3) PROTOCOL(LU61)
SENDPFX(WC) RECEIVEPFX(XC) SENDCOUNT(10)
RECEIVECOUNT(40) DESC(Up sessions with DAD2) ...

Figure 37. Resource Definitions for Links from File-Owning and Queue-Owning Regions (Part 3 of 3). These define the
links from the file-owning and queue-owning regions to all the application-owning regions shown in Figure 1 on
page 18. The definitions are the same for both regions, and therefore can be included in the startup group list for
each, using the generic CSD GROUP name, CONNDR##.

134 z/OS V1R1.0 Parallel Sysplex Application Migration

Use the naming convention to identify the SYSIN member that refers to each clone
set, using a generic symbol wherever possible. For example, CICSDT## for the
Dallas terminal-owning regions, and CICSDA## for the Dallas application-owning
regions.

By using symbolic parameters for part of the SYSIN member name, you can use
the same line of JCL in your standard CICS startup procedure for all CICS regions.
See “Using SYSIN for Common System Initialization Parameters” on page 156 for
an example.

Defining the Unique System Initialization Parameters
For each region, define separately those system initialization parameters that are
unique to the region. The only system initialization parameters that must be unique
are the identifiers—the APPLID, SYSIDNT, MNSUBSYS, and the DBCTLID
parameters.

The most convenient way to define the unique parameters is in the PARM
parameter of the EXEC PGM=DFHSIP statement, using symbolic parameters. This
provides the greatest degree of flexibility.

Examples of SYSIN Members for Cloning Application-Owning Regions
To initialize, say, the 12 application-owning regions in the parallel sysplex target
configuration, you need:

v The default SIT (DFHSIT)

v All the common system initialization parameters defined in a SYSIN member
named, for example, CICS410.SYSIN(CICSDA##)

v The system initialization parameters that are unique to each region represented
by symbols in the CICS startup procedure.

In this illustration, we have assumed that the 12 application-owning regions can all
support the same applications—that they are all clones one of another. The
following are some factors you should consider when planning which regions are to
be exact clones:

v You need multiple application-owning regions for workload balancing and for
workload separation. However, regardless of workload, consider making all
application-owning regions the same. This can save time and effort.

v Cloning all the application-owning regions in a CICSplex means that there are
redundant transaction definitions installed in some regions because of workload
separation managed by the terminal-owning regions. Even if an
application-owning region is defined to handle transactions for all applications,
the dynamic transaction routing program only routes to application-owning
regions those transactions that they are allowed to receive.

v Do redundant transaction definitions matter? They are installed above 16MB, and
therefore should not be a problem in terms of virtual storage used.

(The autoinstall facility for programs and mapsets, introduced in CICS/ESA 4.1,
means there should not be any redundant program definitions, because these
are created dynamically only when needed.)

v Application-owning regions that are special in some way, and need to be
distinguished, should not be cloned.

v For CICS cold starts, use multiple CSD group lists to control the definitions in the
sets of CICS clones. “Chapter 17. Planning the CICS Startup Procedures” on
page 149 contains a number of examples of system initialization parameters
defined in members of a SYSIN data set, and each of these specifies 4 CSD

Chapter 14. Planning the Resource Definitions 135

group lists. (Although 4 names is the maximum allowed on the GRPLIST
parameter, by specifying generic names you can actually reference many more
than 4 lists.)

v All the application-owning regions in the target configuration can be cloned, even
though each set of 3 in the 4 MVS images is connected to a different DBCTL and
a different DB2.

For examples of what a SYSIN member for the common system initialization
parameters might typically contain, see “The Application-Owning Region’s
Parameters” on page 152.

136 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 15. Planning CICSplex Security

This chapter discusses a number of security considerations associated with
operating an MRO CICSplex. It covers the following topics:

v Defining bind-time and link security

v Authenticating users in remote MRO regions

v Guaranteeing equal access to resources for cloned application-owning regions.

v MRO link security considerations

Defining Bind-Time and Link Security
MRO bind-time security is changed in CICS/ESA 4.1, and these changes could also
affect link security, depending on how you have defined link security on your earlier
releases of CICS.

CICS no longer uses its own internal MRO security mechanism, based on the
SECURITYNAME parameter from the CONNECTION resource definition, for
bind-time security authorization. Instead, it uses the MVS system authorization
facility (SAF) interface to call an external security manager, such as RACF, or the
SureWay Security Server element of OS/390 or z/OS.

Note: When you see the term RACF in the following topics, understand it to mean
either the RACF product or the Security Server element to establish the
security authorization of each CICS region for MRO logon and connect
processing.

You must review the following changes and redefine your bind-time and link security
as necessary.

Defining Bind-Time Security
The change to CICS bind-time security means that you must define new
DFHAPPL.applid profiles to RACF in order to authorize CICS regions to log on to
MRO and to connect to one another.

The RACF definitions that you need for MRO security are described in the CICS
RACF Security Guide.

Defining Link Security
There are changes affecting link security as a result of making SECURITYNAME
obsolete for MRO in CICS/ESA 4.1.

In earlier releases of CICS, if you do not specify the link USERID parameter on the
SESSIONS definition, by default the remote CICS region uses the
SECURITYNAME parameter to sign on the link for link security.

In CICS/ESA 4.1, if you do not specify the USERID parameter on the SESSIONS
definition, a CICS region “signs-on” its partner for link security purposes using the
CICS region userid passed by its partner in the bind-time security check. For
example, an application-owning region signs on a terminal-owning region using the
CICS region userid of the TOR.

For more information, see “MRO Link Security Considerations” on page 140.

© Copyright IBM Corp. 1994, 2001 137

Authenticating Users in Remote MRO Regions
Generally, a remote MRO region, such as an application-owning region, signs on
userids in the following situations:

v As a result of receiving an MRO request, such as a transaction-routing request or
a function-shipping request, when the CONNECTION resource definition
specifies ATTACHSEC=IDENTIFY

v As a result of a signon request from a user that has logged on directly through
VTAM by means of the application-owning regions APPLID (if known).

The name that CICS passes to RACF as the APPL profile name for signon
authentication is different for these two situations.

Note: CICS also signs on link userids, but this is a separate topic discussed under
“MRO Link Security Considerations” on page 140.

Authenticating Users Associated with MRO Requests
In CICS/ESA 4.1, a remote region, such as an application-owning region or
file-owning region, uses the same security data as the terminal-owning region when
signing on a remote user associated with a transaction. The name that the remote
CICS passes to RACF as the APPL profile name for signon validation purposes is
the same name used by the terminal-owning region. This name can be one of the
following:

v The VTAM generic resources name for the CICSplex, if the GRNAME system
initialization parameter is specified in the terminal-owning region

v The CICS generic APPLID of the terminal-owning region if GRNAME is not
specified.

The terminal-owning regions pass one of these with transaction routing requests for
use by application-owning regions when authenticating the user signon. The same
APPL profile name is passed to other remote regions by the application-owning
regions with function-shipping requests (or when daisy-chaining transaction routing
requests). Remote regions use the passed name when performing the user signon
that is required for attach-time security checking when ATTACHSEC=IDENTIFY is
specified on the link.

This means that users who are authorized to signon to a terminal-owning region are
automatically authorized to access other regions via MRO links.

There are some major benefits accruing from this:

v The security administrator does not need to maintain the access list for separate
RACF APPL profiles for each application-owning region to which users need to
be authorized, to run routed transactions. When users are authorized to the
RACF APPL profile for the terminal-owning regions (using the VTAM generic
resource name as the APPL profile name), they are automatically authorized to
be signed on by CICS in the application-owning regions.

v RACF 2.1 reuses information cached in the virtual lookaside facility (VLF)
following the signon in the terminal-owning region, allowing the sign-on required
an application-owning region to be performed without any I/O activity.

Authenticating Users Signing On Directly to Remote Regions
The signon process for users logged on directly to a remote region, such as an
application-owning region or file-owning region, is the same as in earlier releases.

138 z/OS V1R1.0 Parallel Sysplex Application Migration

The CICS region passes its own APPLID to RACF as the APPL profile name for
signon authentication. Thus, unless users are explicitly authorized to that APPLID
they cannot sign on directly to that APPLID.

You can use these signon processes to advantage in a CICSplex, by enabling
terminal users to be authorized to all the regions in the CICSPlex through the
CICSPlex generic resources name, whilst at the same time preventing them from
signing on directly to particular APPLIDs.

Guaranteeing Equal Access to Cloned Application-Owning Regions
It is important to ensure that all the application-owning regions that process the
same workload are defined with the same levels of link security for the
terminal-owning region connections. This is to ensure that routed transactions have
the same security authorizations across the set of cloned application-owning
regions, to ensure that transactions that work when routed on one link, do not fail
on another.

It is also important to ensure that all links to a resource-owning region from a set of
cloned application-owning regions are defined with the same level of link security.
This is to ensure that function-shipped requests have the same security
authorizations regardless of which of the cloned application-owning regions
originated the request.

You are also recommended to use the same CICS region userid for all the cloned
regions, of the same type, in a CICSplex. You should consider, for example, using
one userid for all the terminal-owning regions, another for all the application-owning
regions, and so on. This ensures that:

v The same basic security rules control all the clones

v The minimum number of definitions are required to the external security
manager.

In “Chapter 17. Planning the CICS Startup Procedures” on page 149, we
recommend that you use a single procedure to start all CICS regions in the
CICSplex, and that you start CICS regions as started tasks. To follow this
recommendation, and at the same time run each type of region under a unique
userid, you need to use MVS JOB support for started tasks and the associated
RACF STARTED class profiles.

The earlier method of applying security to started tasks, using the RACF started
procedures table to associate the userid with the procedure name, restricts you to
only one userid per procedure name. Using STARTED class profiles, with MVS/ESA
SP 5.1 JOB support for started tasks, enables you to assign different userids for
different invocations of the procedure.

Defining CICS Region Userids for Started Jobs
If you use a single procedure to start all your CICS regions as started tasks, they all
execute under the authorization of the userid associated with the procedure in the
RACF started task table, ICHRIN03.

You are recommended to modify your CICS startup procedure so that it can be
executed as a started job (see Figure 43 on page 159 for an example of such a
procedure with a JOB statement). The security mechanism for started jobs enables
you to use a different RACF userid for each started job. Alternatively, you could use

Chapter 15. Planning CICSplex Security 139

one userid for all the regions of the same type. See “MRO Link Security
Considerations” for information about using one or more userids for starting CICS
regions.

The support for multiple userids for started jobs is provided by the RACF STARTED
general resource class, and its associated STDATA segment. You define profiles in
this class for each job that needs to run under a unique userid.

The following example shows how to define a generic profile for jobs that are to be
started using the CICSTASK procedure, where the job names begin with the letters
CICSDT (the terminal owning regions in our target configuration):
RDEFINE STARTED (CICSTASK.CICSDT*) STDATA(USER=(CICSDT##))

When you issue the START command to start CICSTASK with a job name of, say,
CICSDTA1, MVS passes the member name (CICSTASK), and the job name
(CICSDTA1) in order to obtain the userid under which this CICS terminal-owning
region is to run. In the example shown above, CICSDT## is the userid under which
all the terminal-owning regions run if they are started using started JOB support.

You must ensure that the userids specified in the STARTED class profile are
defined to RACF. You must also ensure that the userids are properly authorized to
the data set profiles of the CICS regions that run under them.

There are several factors to consider when planning the userids under which the
regions in your CICSplex are going to run. On the one hand you might want
different authorizations for the different types of region. However, you would
probably consider it unnecessary to run every region under a unique userid, and it
would cost time and effort to set up and maintain such number of userids. One way
of keeping the number of profiles and userids to a minimum is to run all the cloned
regions of each type under the same CICS region userid. This means that for our
target configuration, described in Chapter 2. Planning the Subsystem Configuration
for a Sysplex, we could run the Dallas CICSplex under five userids as follows:

CICSDT## The common region userid for all terminal-owning regions

CICSDA## The common region userid for all the application-owning regions

CICSDFA1 The region userid for the file-owning region

CICSDQA1 The region userid for the queue-owning region

On the other hand, using different userids for connected regions automatically
enforces link security when you are running the CICSplex with RACF security if you
omit to specify a link security userid on the SESSIONS definitions for MRO links.

MRO Link Security Considerations
In our target CICSplex configuration shown in Figure 1 on page 18, users signing on
to the terminal-owning regions need access to all the application-owning regions.
The CICS/ESA 4.1 signon authentication process ensures this (see “Authenticating
Users in Remote MRO Regions” on page 138). With this mind, you may conclude
that from a security viewpoint, all the CICS regions are one logical entity, all regions
of the same type being clones of one another. In this case, you may decide that
you don’t need to operate MRO link security, and avoid the overhead on link
security checking.

140 z/OS V1R1.0 Parallel Sysplex Application Migration

Bypassing Link Security Checking
You provide the userid for link security checking on the USERID parameter of the
SESSIONS resource definition for the MRO connection.

To establish whether you want link security checking, or whether it is to be
bypassed, CICS compares its own region userid with the link userid defined on the
SESSIONS definition:

v If the userids are the same, link security checking is bypassed.

v If they are different, CICS “signs on” on the userid specified on the SESSIONS
definition, and uses this on all link security checks.

If you do not specify a link security userid on the SESSIONS definition, CICS uses
the region userid of its partner instead. When a CICS MRO region receives its
partner’s region userid during bind security checking, it compares this with its own
region userid. If they are the same, link security checking is bypassed, and the only
security checks made in, for example, an application-owning region are determined
by the ATTACHSEC parameter on the connection definition.

For information about the effect of the ATTACHSEC parameter, see Table 4 on
page 142.

Authorizing the Link Userid
CICS calls RACF for the usual signon authentication when signing on the link
userid. For this purpose, the CICS region uses its own APPLID as the profile name
of the APPL resource class. This means you must authorize the link userid to the
APPL profiles of the CICS region in which it is being installed.

For example, if you:
v Specify CICSDT00 as the userid on a SESSIONS definition, and
v Install the SESSIONS definition in a set of cloned application-owning region

whose APPLIDs are CICSDAA1, CICSDAA2, and CICSDAA3

you must authorize userid CICSDT00 to the application-owning regions’ APPL
profiles named CICSDAA1, CICSDAA2, and CICSDAA3.

Naming Convention for Link Userids
One suggestion is to define a userid that corresponds, in part, to the region userid
of the partner region on the MRO link.

For example, if all the terminal-owning regions to which a set of cloned
application-owning regions are connected are all running under CICSDT##, you
could specify CICSDT00 as the userid in all the SESSIONS definitions installed in
the application-owning regions. This ensures that all the link security checks against
transactions routed from any terminal-owning region to any application-owning
region are made against the same userid (see “Guaranteeing Equal Access to
Cloned Application-Owning Regions” on page 139).

The prefix letters of the link userid (CICSDT) also help you to relate this link userid
with the regions running under the CICSDT## region userid and with APPLIDs
beginning with CICSDT.

Security in the Receiving Regions
Whether or not you bypass CICS link security checking, you should consider
carefully what type of security you want to enforce in all CICS regions that receive
requests from MRO partners. The ATTACHSEC parameter offers two options,

Chapter 15. Planning CICSplex Security 141

LOCAL or IDENTIFY, the effect of which, with and without link security, are shown
in Table 4.

Table 4. MRO Security Options

Link Security ATTACHSEC

LOCAL IDENTIFY

Yes CICS ignores the userid
associated with the
transaction, and issues all
security checks against the
link userid only.

CICS issues two security
checks:

1. Against the userid
associated with the
transaction

2. Against the link userid,
ensuring that the
transaction cannot access
resources not authorized
for the link.

Bypassed CICS issues all security
checks against the CICS
default userid (the userid
specified on the DFLTUSER
system initialization
parameter)

CICS issues security checks
against the userid associated
with the transaction.

Recommendations for MRO Security:

1. You are recommended to specify ATTACHSEC=IDENTIFY in application-owning
regions and resource-owning regions. Otherwise, every user accessing
resources in that region via MRO is granted the same security authorizations.

2. If you choose to bypass link security checking, you are recommended to do so
by making the USERID parameter on the SESSIONS definition the same as the
CICS region’s userid. Do not rely upon the default mechanism (see “Bypassing
Link Security Checking” on page 141).

3. If you choose to employ link security checking, you are recommended to do so
by specifying an appropriate userid on the USERID parameter of the
SESSIONS definition. Do not rely upon the default mechanism (see “Bypassing
Link Security Checking” on page 141).

4. For terminal-owning regions, whose main function is dynamic transaction
routing, you are recommended to omit definitions for remote transactions,
except where necessary (see “No Transaction Definitions in the
Terminal-Owning Regions” on page 123). The terminal-owning regions do not
perform transaction-attach security checks on transactions that are attached
using the DTRTRAN mechanism and dynamically routed to the
application-owning regions. If transactions are attached using the DTRTRAN
mechanism, and subsequently run locally, CICS does perform the
transaction-attach security check.

142 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 16. Planning for Workload Management

This chapter discusses the MVS and CICSPlex SM workload management
requirements for a CICSplex.

Basically, there are three main components involved in managing a CICS workload:

CICSPlex SM
You provide CICSPlex SM with CICS-specific workload specifications and
definitions which CICSPlex SM needs to support both workload balancing and
workload separation in the CICSplex. These workload specifications and
definitions ensure that CICSPlex SM has all the necessary information about
the transactions that comprise the CICSplex workload, and about all the
application-owning regions that are available to process the work.

A CICS dynamic routing program
You need a dynamic transaction routing program that can exploit the services of
CICSPlex SM and route transactions to the appropriate application-owning
regions.

If you have CICSPlex SM installed, you can use the dynamic transaction routing
program provided by CICSPlex SM.

The MVS workload manager
You provide the workload manager with a service definition, which MVS needs
to ensure it makes the necessary resources available to the CICS regions and
associated subsystems that ultimately process the user transactions. The MVS
service definition must cover the workload for the entire sysplex, so that MVS
can allocate resources for all types of work—online, batch, and system-related
(such as JES, SMF, and other system management components).

The service definition is primarily needed for goal-oriented workload
management.

To operate a CICSplex of the kind discussed in this book, you must use some, or
all, of these components to optimize the performance of the CICSplex, and to
achieve the objectives defined in an MVS service definition.

Using CICSPlex SM for Workload Balancing and Workload Separation
CICSPlex SM supports both workload balancing and workload separation.

Workload Separation
In our target configuration we have assumed that all the application-owning regions
are identical clones, with each AOR capable of processing the full range of
transactions. Nevertheless, we could still use the workload separation function if we
wanted to ensure, for example, that CICS-DB2 and CICS-DL/I transactions ran in
different application-owning regions. Using CICSPlex SM, we could identify and
route the CICS-DB2 transactions to only some of the application-owning regions,
and route all other transactions to the remaining application-owning regions.

Workload Management
CICSPlex SM supports two workload balancing algorithms:

The queue algorithm
Working with this algorithm, CICSPlex SM selects the application-owning region
that has the shortest queue of transactions (in proportion to the specified

© Copyright IBM Corp. 1994, 2001 143

maximum number of tasks for that region). Although the queue length is the
primary factor that CICSPlex SM uses in the queue algorithm, there are other
factors that also affect the choice of application-owning region.

In our target configuration, where all application-owning regions are running in
MVS images residing in CPCs of the same capacity, the MXT system
initialization parameter should specify the same values for the cloned
application-owning regions. In a situation where all the MXT values are the
same, its the actual queue length that CICSPlex SM uses in its algorithm.

The goal algorithm
Working with this algorithm, CICSPlex SM selects the application-owning region
that is most likely to meet the response time goals set for the transaction in the
MVS workload manager service definition. Although the goals set for a
transaction are the primary factor that CICSPlex SM uses in the goal algorithm,
there are other factors that also affect the choice of application-owning region.

For this algorithm, CICSPlex SM uses the MVS workload management
interfaces to obtain information about MVS workload policies.

For both these methods, CICSPlex SM maintains information about the state of the
candidate application-owning regions, which it obtains by constant monitoring
through its agents resident in the application-owning regions.

For information about the other factors that CICSPlex SM uses in these two
workload balancing algorithms, see, the CICSPlex SM Concepts and Planning
manual.

Where to Start
To begin with, we recommend that you use the workload balancing queue
algorithm. This involves the least administrative effort, and is easier to implement.
With this method, you do not need to define an MVS workload manager service
definition.

We also recommend that you use the dynamic transaction routing program supplied
with CICSPlex SM.

Implementing Shortest-Queue Workload Balancing
The CICSPlex SM dynamic transaction routing program is controlled by values you
supply to CICSPlex SM in the form of definitions. These are:
v The workload specification
v The workload definition
v The transaction group

CICSPlex SM uses all the available information when selecting the best
application-owning region, from its list of available application-owning regions, to
which a transaction should be routed.

The information you provide to CICSPlex SM can include details about
inter-transaction affinities, and CICSPlex SM takes these affinities into account
when selecting a suitable application-owning region.

The CICSPlex SM Workload Management Entities
To implement the shortest-queue algorithm, begin by defining a workload
specification (you need only the workload specification for the shortest-queue
algorithm). The information it provides includes:

v The name of the specification

144 z/OS V1R1.0 Parallel Sysplex Application Migration

v The name of a default set of application-owning regions among which
transactions can be routed.

v The type of workload algorithm—QUEUE in this case.

Workload Separation: For workload separation purposes, you must also provide
workload definitions. Such definitions would be needed for our target configuration
to specify separately the DL/I workload and the DB2 workload.

Inter-Transaction Affinities: Some of your applications may contain transactions
that cannot be freely dynamically routed because of inter-transaction affinities.
Although you could resolve problems of affinity by defining such transactions to be
statically routed, you should nevertheless consider making them dynamic and let
CICSPlex SM manage the affinity. For this purpose you define transaction groups,
in which you specify details of the affinities that you want CICSPlex SM to manage.

Most affinities are of limited duration and scope, often being related to an instance
of a pseudo-conversational transaction from a particular terminal. In most cases,
CICSPlex SM can dynamically route transactions until an affinity begins, observe
the affinity restriction while it is in effect, and as soon as the affinity is ended, begin
dynamically routing again.

See the CICS Application Programming Guide manual for information about the
duration and scope of inter-transaction affinities.

For more information about the workload management support provided by
CICSPlex SM, see the CICSPlex SM Concepts and Planning manual.

Providing a Dynamic Transaction Routing Program
If you design and write your own dynamic transaction routing program, you must
also plan to provide a number of supporting functions that can only be performed
outside the dynamic transaction routing program itself. These supporting functions
are concerned with monitoring the status of the set of application-owning regions
that are candidates for dynamic transaction routing, and providing this information to
the dynamic transaction routing programs that are running in the terminal-owning
regions.

Without the support of a system management product such as CICSPlex SM, you
must provide these support functions yourself, as well as write the dynamic
transaction routing program. These functions can be very complex and costly to
design and implement. For more information about design considerations for
developing your own dynamic transaction routing environment, see the CICS/ESA
Dynamic Transaction Routing in a CICSplex.

An alternative approach, and the one we recommend, to is to use CICSPlex SM, or
an equivalent system management program product. In particular, we recommend
that you use a product that provides both a ready-made dynamic transaction routing
program and all the supporting functions. CICSPlex SM provides a programmable
interface that you can use in your own dynamic transaction routing program,
enabling you to make use of the CICSPlex SM workload separation, workload
balancing, and affinity functions.

However, we recommend that if you have CICSPlex SM installed that you use its
dynamic transaction routing program. The dynamic transaction routing program
provided with CICSPlex SM is called EYU9XLOP. For an overview of the function
provided by EYU9XLOP, see CICSPlex SM Concepts and Planning manual.

Chapter 16. Planning for Workload Management 145

The MVS Workload Manager
You can implement CICSPlex SM’s shortest-queue workload management
regardless of whether you are using MVS workload manager for other subsystems
with the sysplex.

There are basically three states with regard to MVS workload manager:

v MVS workload management support not active

v MVS workload manager running in compatibility mode

v MVS workload manager running in goal mode.

You can operate your CICSplex with CICSPlex SM’s shortest-queue algorithm with
the MVS workload manager in any of these states.

Preparing to Migrate to Goal-Mode Workload Management
When you decide to change from shortest-queue to goal-oriented workload
management, you will have to determine CICS response times to set in your MVS
service class definitions.

The MVS service definition consists of the following elements:
v Service policies
v Workloads
v Service classes
v Resource groups
v Classification rules

These are explained in the z/OS MVS Planning: Workload Management.

Determining CICS response times before defining goals
Before you set goals for CICS work, you can determine CICS current response
times by running CICS in compatibility mode with an arbitrary goal. For this
purpose, use the SRVCLASS parameter, provided by MVS/ESA SP 5.1 in the
installation control specification (ICS). This parameter lets you associate a service
class with a report performance group, to be run in compatibility mode. You would
then:

1. Define a service policy, with a default service class, or classes, for your CICS
work, and specify an arbitrary response time goal (say 3 seconds).

2. Define classification rules for the service class or classes

3. Install the service definition

4. Activate the service policy in compatibility mode.

The average response time for work within the service classes are reported under
the report performance group in the RMF Monitor I workload activity report.

This information helps you to set realistic goals for running your CICS work when
you switch to goal mode. The reporting data produced in RMF reports:

v Is organized by service class

v Contains reasons for any delays that affect the response time for the service
class (for example, because of the actions of a resource manager or an I/O
subsystem).

From the reported information, you may be able to determine configuration changes
to improve performance.

146 z/OS V1R1.0 Parallel Sysplex Application Migration

Example of using SRVCLASS parameter of IEAICSxx: To obtain CICS
response time information while in compatibility mode, you can set up the following:

v In your service definition, set up the following:

– A test policy, comprising the following:
Service Policy Name . . . : CICSTEST
Description : Migration (compatibility) mode

– A workload definition, in which to define the required service class:
Workload Name : CICSALL
Description CICSTEST migration workload

– A service class for all CICS transactions:
Service Class Name : CICSALL
Description All CICS transactions
Workload Name CICSALL

---Period--- ---------------------Goal---------------------
Action # Duration Imp. Description

__ 1 1 Average response time of 00:00:03.000

Note: It does not matter what goal you specify, since it is not used in
compatibility mode, but it cannot be discretionary.

– Specify the name of the service class under the classification rules for the
CICS subsystem:
Subsystem Type : CICS
Default Service Class . . : CICSALL

v In your ICS member in SYS1.PARMLIB (IEAICSxx), specify:
SUBSYS=CICS,
SRVCLASS=CICSALL,RPGN=100

v Install the workload definition in the coupling facility.

v Activate the test service policy, either by using options provided by the WLM
ISPF application, or by issuing the following MVS command:
VARY WLM,POLICY=TEST

You receive response time information about CICS transactions in the RMF Monitor
I Workload Activity Report under report performance group 100. For more
information about defining performance goals and the use of SRVCLASS, see z/OS
MVS Planning: Workload Management.

When you are ready to switch from CICSPlex SM’s shortest-queue to goal-oriented
workload management, change the CICSPlex SM workload specification from
QUEUE to GOAL, and activate the appropriate MVS workload management service
policy.

Chapter 16. Planning for Workload Management 147

148 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 17. Planning the CICS Startup Procedures

This chapter discusses methods of starting multiple CICS regions within the
sysplex. These methods are designed to reduce the system administration work
involved to a minimum.

The chapter covers the following topics:

v The CICS system initialization parameters

v The required CICS system data sets

v The CICS startup procedure.

The CICS System Initialization Parameters
Attempting to tailor every CICS region by defining a unique set of system
initialization parameters for each region is not only costly initially, but requires
significant effort to maintain. We recommend that you consider the following
approach:

v Use the CICS-supplied default table, DFHSIT, to avoid generating many system
initialization tables that require identifying suffixes.

v Define a set of system initialization parameters that are common to types of
region, such as terminal-owning regions or application-owning regions.

v Use the SYSIN data set to override system initialization table default values for
parameters that are common to CICS region type.

v Use the MVS PARM parameter on the EXEC PGM=DFHSIP statement to pass
those system initialization parameters that must be unique.

Each of these ideas is discussed in a little more detail below.

Using the Default System Initialization Table
CICS requires a system initialization table at startup to provide the system
initialization parameters for the CICS region.

Parameters defined in a system initialization table can be overridden at startup by
system initialization parameters supplied in:

v The PARM parameter of the JCL EXEC statement.

Use this method to provide the system initialization parameters that are unique to
each region.

v The SYSIN data set.

Use this method to provide the system initialization parameters that are common
to the cloned regions.

Note: The CICS system initialization parameters can also be entered at the MVS
console, but this is not considered an acceptable option for production
systems.

If you define your parameters in the DFHSIT macro, and generate your own table
with a suffix, the identifying suffix must be specified to CICS at startup on the SIT
parameter.

© Copyright IBM Corp. 1994, 2001 149

The method we recommend is to omit the SIT startup parameter from the CICS
startup JCL, and allow CICS to load DFHSIT, the unsuffixed default table. You can
then supply, from the SYSIN data set, the system initialization parameters that you
need to tailor your CICS regions.

Can I override all the default table parameters?: You can override all except two
of the parameters in the system initialization table. For security reasons, these are:

v The external security manager (ESM) exits parameter (ESMEXITS) controlling
the passing of installation data to the ESM. The default value is NOINSTLN.

v The VTAM high performance option parameter (HPO) controlling the VTAM
authorized path feature of the HPO. The default is NO.

If you need to generate a system initialization table in order to modify the default
values of these restricted parameters, use the source of the CICS-supplied default
table. This is called DFHSIT$$, and is supplied in the CICS samples library,
CICS410.SDFHSAMP. Change the relevant parameters, and reassemble the
unsuffixed default table.

Customized system initialization tables for cloned regions: If you prefer to use
a customized system initialization table rather than the default table, you should
plan to use the same table for each type of region—one for all terminal-owning
regions, one for all application-owning regions, and so on.

Defining Common System Initialization Parameters for Cloned Regions
Study the system initialization parameter requirements for each type of region, and
identify those parameters that are applicable to the region type.

Parameters generally are applicable to a specific function. If the region is not
required to support a particular function you can ignore that function’s parameters.

The CICS region types in an MRO CICSplex are defined by the resources they
manage, which in turn determines the kind of function that is needed in the different
types of region.

The Terminal-Owning Region’s Parameters
Identify all the parameters that are relevant to a terminal-owning region, and plan
what values you need to specify as common parameters for all the cloned
terminal-owning regions.

In particular, consider the system initialization parameters that are applicable to the
autoinstall function, terminal control, and VTAM. For example, the autoinstall
parameters are as follows:

AIEXIT Names the autoinstall user-exit program.

AILDELAY Specifies the logoff delay period after which CICS deletes a
terminal entry from the terminal control table.

AIQMAX Specifies the maximum number of terminals that can be queued for
autoinstall.

AIRDELAY Specifies the logoff delay period after which CICS deletes entries
for terminals not in session following an emergency restart.

All these are important in a terminal-owning region, and should be defined with the
same values for all cloned terminal-owning regions in the CICSplex.

150 z/OS V1R1.0 Parallel Sysplex Application Migration

For information about the other system initialization parameters that relate to
terminal control, see the table of system initialization parameters grouped by
functional area in the CICS System Definition Guide.

VTAM generic resources name and APPLIDs: All the terminal-owning regions
should specify the same generic resource name on the CICS GRNAME system
initialization parameter, and this should be defined in the SYSIN data set with all the
other system initialization parameters that are common to terminal-owning regions.

However, the APPLID parameter needs to be unique to each region, and should not
be included in the SYSIN data set. See “Using the PARM Parameter for Unique
System Initialization Parameters” on page 157 for information about supplying the
APPLIDs to each CICS region at startup.

Example
An example of the system initialization parameters that could be defined as
common to all the terminal-owning regions in a CICSplex are shown in Figure 38.

Assumptions for the terminal-owning region: When planning the system
initialization parameters for the terminal-owning regions you need to consider the
differences in requirements between them and the other regions. In our example
shown in Figure 38 we have made the following assumptions:

Storage protection and transaction isolation
These options are allowed to default; that is, there is no storage protection and
no transaction isolation (STGPROT=NO and TRANISO=NO) in the
terminal-owning region.

The main benefits of CICS storage protection and transaction isolation are the
protection of CICS storage from user-key transactions and the isolation of
user-key task-lifetime storage from other user-key transactions. It is most likely
that any user-defined transactions that execute in a terminal-owning region will
be running in CICS key, and therefore will not benefit from CICS storage
protection or transaction isolation.

* ***
* CICS system initialization parameters common to all cloned TORs *
* ***
CICSSVC=218 The CICS SVC number
CSDDISP=SHR Disposition for the CSD
CSDDSN=CICS410.DFHCSD Data set name of the CSD
DCT=GQ The global table for all queues in the CICSplex
DTRPGM=WLMDYP Dynamic transaction routing exit
FCT=NO No file control table (using RDO for files)
GMTEXT='Dallas CICSPlex Terminal-Owning Region (CICS/ESA 4.1)'
GRNAME=CICSD### Generic resource name for the Dallas CICSplex
* CSD Group lists for cloned TORs
GRPLIST=(IBMLIST*,ISVLIST*,CICSDT##)
JCT=2$ The CICS sample journal control table
* The IRC & ISC parameters required for MRO
IRCSTRT=YES, Start IRC during initialization
ISC=YES, Include the interregion communication programs
MXT=50 Set maximum tasks to 50
PLTPI=DT PLT table is DFHPLTDT
LPA=YES Use the LPA for defined and eligible modules
TCT=5$ Sequential terminals required
TCTUALOC=ANY TCT User Areas location - above 16MB
TRTABSZ=1024 1MB internal trace table

Figure 38. Example of Common System Initialization Parameters for a Terminal-Owning Region

Chapter 17. Planning the CICS Startup Procedures 151

Dynamic storage limits
The dynamic storage limits above and below the line are allowed to default to
5MB below the 16MB line and 20MB above 16 megabytes (DSALIM=5MB and
EDSALIM=20MB).

For dynamic transaction routing, CICS attaches a CICS relay transaction for
each routed transaction, and these should comprise almost all the tasks that
run in the terminal-owning regions. The default limits should be adequate for
this workload.

Maximum number of tasks
The maximum number of tasks is set to 50 because this is the theoretical
maximum that can be processed in 1 second by one of the CPCs shown in our
target configuration. With each terminal-owning region limited to 50, this gives a
maximum number of tasks of 200 across the 4 terminal-owning regions in our
target CICSplex.

Transient data
It is probable that the only transient data queues you need in the
terminal-owning region are the system queues required by CICS. Nevertheless,
unless virtual storage is limited (and the DCT is located mostly above 16MB),
you can use the same destination control table for the terminal-owning regions
as for the application-owning regions.

CICS/ESA 4.1 supports remote attributes on intrapartition and extrapartition
transient data entries in the DCT. To decide whether a queue is local or remote,
CICS compares the SYSIDNT parameter in the DCT with its own system
initialization parameter SYSIDNT. If the SYSIDNT names are the same, the
queue is local; if they are different, the queue is remote.

The Application-Owning Region’s Parameters
Identify all the parameters that are relevant to an application-owning region, and
plan what values you need to specify as common parameters for all the cloned
application-owning regions.

In particular, consider all the system initialization parameters that are applicable in
any way to the running of user applications. For example, review the groups of
parameters that relate to storage manager, parameter manager and system
initialization, intersystem communication, transient data and temporary storage, and
journaling.

For information about all the system initialization parameters that relate to the
various functional areas, see the table of system initialization parameters grouped
by function in the CICS System Definition Guide.

APPLIDs: You can choose not to define the APPLIDs for each application-owning
region to VTAM, which means that the APPLIDs are used only by CICS regions for
communication with their MRO partners.

Alternatively, you can control terminal access to the application-owning regions by
setting appropriate values on the AIQMAX system initialization parameter. By
defining the APPLID to VTAM, but specifying AIQMAX=0, you prevent anyone
logging on directly to the application-owning regions through autoinstall, in normal
circumstances, while retaining the ability to do so should the need arise. You can do
this by modifying the AIQMAX value at the console, using the CEMT SET
AUTOINSTALL command. To enable you to do this, you should ensure that the
necessary console definitions are installed.

152 z/OS V1R1.0 Parallel Sysplex Application Migration

You could also explicitly define a limited number of system programmer’s terminals
for use on the application-owning regions, and restrict access in this way. Another
method is to use RACF to prevent unauthorized access to application-owning
regions.

Using RACF to control access to application-owning regions: You can also
use RACF security checking to restrict logon to an application-owning region. In
CICS/ESA 4.1, an application-owning region uses the same security check as the
terminal-owning region when signing on a remote user associated with a
transaction.

See “Chapter 15. Planning CICSplex Security” on page 137 for details.

Temporary storage: To avoid any intertransaction affinity connected with the use
of temporary storage, you should plan to define temporary storage queues as
remote queues. This requires a temporary storage table, specified on the TST
system initialization parameter.

Example
An example of the system initialization parameters that could be defined as
common to all the application-owning regions in a CICSplex are shown in Figure 39.

* ***
* CICS system initialization parameters common to all cloned AORs *
* ***
AIQMAX=0 No autoinstall terminals in this region
CMDPROT=YES CICS command address validation/protection
CICSSVC=218 The CICS SVC number
CSDDISP=SHR Disposition for the CSD
CSDDSN=CICS410.DFHCSD Data set name of the CSD
CSDJID=01 Use system log for auto journaling
CWAKEY=CICS CICS key for the CWA
DSALIMIT=7M Allocate 7MB for the DSAs below 16MB.
DBP=1$ Dynamic backout program - no local DL/I support
DCT=GQ The global table for all queues in the CICSplex
EDSALIMIT=100M Allocate 100M for the DSAs above 16MB.
FCT=NO No file control table (using RDO for files)
* CSD Group lists for cloned AORs
GRPLIST=(IBMLIST*,ISVLIST*,CICSDA##)
JCT=2$ The CICS sample journal control table
* The IRC & ISC parameters required for MRO
IRCSTRT=YES, Start IRC during initialization
ISC=YES, Include the intersystem communication program
LPA=YES Use the LPA for defined and eligible modules
MXT=20 Set maximum tasks to 20
PLTPI=DA PLT table is DFHPLTDA
RENTPGM=PROTECT Read-only DSAs required.
SRT=1$ The CICS sample system recovery table
STGPROT=YES Storage protection on.
TCT=5$ Sequential terminal support required
TCTUAKEY=CICS CICS key for TCT user areas
TCTUALOC=ANY Location of TCTUAs - above 16MB
TRTABSZ=2000 Trace table size
TRANISO=YES Transaction isolation on.
TST=DA Temporary storage table is DFHTSTDA
WRKAREA=2048 2KB for the common work area (CWA)

Figure 39. Example of Common System Initialization Parameters for an Application-Owning Region

Chapter 17. Planning the CICS Startup Procedures 153

Assumptions for the application-owning region: When planning the system
initialization parameters for the application-owning regions you need to consider the
differences in requirements between them and the other regions. In our example
shown in Figure 39 on page 153 we have made the following assumptions:

Storage protection and transaction isolation
The defaults of STGPROT=NO and TRANISO=NO are overridden because
storage protection and transaction isolation are required in the regions where
user application programs run.

Dynamic storage limits
You must plan how much storage you want CICS storage manager to use
below and above 16 megabytes for the various dynamic storage areas. Allocate
as much as possible below 16 megabytes (while still leaving some non-DSA
storage to satisfy MVS GETMAIN requests). Allocate sufficient storage above
16MB to satisfy the storage requirements when CICS is running up to maximum
task limit (set by the MXT system initialization parameter). You should also set
the MVS REGION parameter in the CICS startup JCL to a value that allows the
CICS storage parameters to be satisfied.

For information on specifying dynamic storage limits, see the CICS System
Definition Guide.

Maximum number of tasks
Setting the maximum number of tasks to 20 allows up to 60 in total if 3
application-owning regions (or 80 if 4 application-owning regions) are running in
each CPC. Allowing a maximum number of tasks of 20 allows for some
variation in the rate of throughput per application-owning region.

When setting the MXT parameter for your application-owning regions,
remember that in an XCF/MRO environment the application-owning regions are
supplied with transactions from all the terminal-owning regions, not just those
running in its own MVS image.

Transient data
The application-owning regions share the same DCT with the queue-owning
region. By means of the SYSIDNT parameter on the intrapartition and
extrapartition queue entries, CICS can determine whether the queues are local
or remote.

By default, queues are treated as local queues. You should omit the SYSIDNT
parameter from the CICS-required queues, (such as CSMT, CADL, and so on)
to ensure each CICS region manages its own queues locally.

The File-Owning Region’s Parameters
It is unlikely that you will have many file-owning regions in a CICSplex, but even if
you have only one you should plan to define the system initialization parameters in
the SYSIN data set in the same way as for the other regions.

Some of the considerations that apply to the cloned terminal-owning regions also
apply to the file-owning regions. An file-owning region typically runs only CICS
code, therefore it would not be appropriate to run file-owning regions with storage
protection and transaction isolation.

You might also apply some application-owning region considerations to the
file-owning regions—for example, by either not defining APPLIDs to VTAM or
inhibiting autoinstall for terminals.

You are recommended to specify MROLRM=YES for all file-owning regions to
ensure the use of long-running mirror tasks.

154 z/OS V1R1.0 Parallel Sysplex Application Migration

Example
An example of the system initialization parameters that could be defined as
common to all the file-owning regions in a CICSplex are shown in Figure 40.

Assumptions for the file-owning region: When planning the system initialization
parameters for an file-owning region you need to consider the differences in
requirements between it and the other regions. In our example shown in Figure 40
we have made the following assumption:

Maximum number of tasks
We have assumed that, if the CICSplex is running at maximum capacity (which
is up to 200 tasks, controlled by the MXT values set for the terminal-owning
regions.), the file-owning region should be capable of supporting the same
number. Thus we have set the maximum number of tasks to 200, allowing the
file-owning region to have up to 200 active mirror tasks.

When setting the MXT parameter for your file-owning regions, remember that in
an XCF/MRO CICSplex it has to support all the application-owning regions.

The Queue-Owning Region’s Parameters
It is unlikely that you will have many queue-owning regions in a CICSplex, but even
if you have only one you should plan to define the system initialization parameters
in the SYSIN data set in a similar to the file-owning region.

Example
An example of the system initialization parameters that could be defined as
common to all the queue-owning regions in a CICSplex are shown in Figure 41 on
page 156.

* ***
* CICS system initialization parameters common to all cloned FORs *
* ***
AIQMAX=0 No autoinstall terminals in this region
CICSSVC=218 The default CICS SVC number
CSDDISP=SHR Disposition for the CSD
CSDDSN=CICS410.DFHCSD Data set name of the CSD
DBP=1$ Dynamic backout program - no local DL/I support
DCT=GQ The global table for all queues in the CICSplex
FCT=NO No file control table (using RDO for files)
* CSD Group lists for the FOR
GRPLIST=(IBMLIST*,ISVLIST*,CICSDF##)
JCT=2$ The CICS sample journal control table
* The IRC & ISC parameters required for MRO
IRCSTRT=YES, Start IRC during initialization
ISC=YES, Include the intersystem communication program
MROLRM=YES Long-running mirrors required
MXT=200 Set maximum tasks to 200 (for mirrors)
RENTPGM=PROTECT Read-only ERDSA required.
PLTPI=DF PLT table is DFHPLTDF
SRT=1$ The CICS sample System Recovery Table
TCT=NO Dummy TCT only required.
TRTABSZ=200 Trace table size

Figure 40. Example of Common System Initialization Parameters for a File-Owning Region

Chapter 17. Planning the CICS Startup Procedures 155

Using SYSIN for Common System Initialization Parameters
When you have planned all the common system initialization parameters that you
need for the cloned regions, store them for use by CICS in members of a
permanent SYSIN data set.

Using a symbolic parameter for part of the member name allows you to use the
same JCL procedure for all types of cloned CICS region.

What about security?: If you are concerned about operational security for your
CICS system initialization parameters, store them in a data set to which access is
strictly controlled.

For example, you could place the system initialization parameters for all CICS
regions in suitably named members of SYS1.PARMLIB. Alternatively, you could
create a CICS.SYSIN data set to which access is equally restricted. If you adopt
this approach, SYSIN DD statements for these could be:

//SYSIN DD DISP=SHR,DSN=SYS1.PARMLIB(DFHSIP&SIP.)
or

//SYSIN DD DISP=SHR,DSN=CICS.SYSIN(DFHSIP&SIP.)

Using the naming conventions described in our target configuration in “Chapter 2.
Planning the Subsystem Configuration for a Sysplex” on page 17, the &SIP.
symbolic parameter represents the CICSplex and type of CICS region. For
example, SIP=DT would indicate system initialization parameters for Dallas TORs,
and SIP=DA would indicate system initialization parameters ## for the Dallas AORs,
and so on. The SIP= parameter is required in the MVS START command for
starting all cloned regions.

* ***
* CICS system initialization parameters common to all cloned QORs *
* ***
AIQMAX=0 No autoinstall terminals in this region
CICSSVC=218 The default CICS SVC number
CSDDISP=SHR Disposition for the CSD
CSDDSN=CICS410.DFHCSD Data set name of the CSD
DBP=1$ Dynamic backout program - no local DL/I support
DCT=GQ The global table for all queues in the CICSplex
FCT=NO No file control table
* CSD Group lists for the QOR
GRPLIST=(IBMLIST*,ISVLIST*,CICSDQ##)
JCT=2$ The CICS sample journal control table
* The IRC & ISC parameters required for MRO
IRCSTRT=YES, Start IRC during initialization
ISC=YES, Include the intersystem communication program
MROLRM=YES Long-running mirrors required
MXT=200 Set maximum tasks to 200 (for mirrors)
RENTPGM=PROTECT Read-only ERDSA required.
PLTPI=DQ PLT table is DFHPLTDF
SRT=1$ The CICS sample System Recovery Table
TCT=NO Dummy TCT only required.
TRTABSZ=200 Trace table size

Figure 41. Example of Common System Initialization Parameters for a Queue-Owning Region

156 z/OS V1R1.0 Parallel Sysplex Application Migration

Using the PARM Parameter for Unique System Initialization Parameters
There are 3 system initialization parameters that must be unique to each CICS
region in a CICSplex. These are the parameters that uniquely identify the region:

SYSIDNT
This system initialization parameter specifies the local name of a CICS
region—the name by which CICS identifies itself. The name is displayed on
screens in CICS-supplied transactions as SYSID=aaaa.

APPLID
This system initialization parameter is the VTAM application program name
(APPL name) for the CICS region. The same name is used to identify the
region to MRO, so even if the CICS region is not defined to VTAM, which may
be the case for application-owning regions in an MRO CICSplex, you must
specify an APPLID parameter. A CICS region’s APPLID must correspond to the
NETNAME in the connection definitions of its MRO partners.

MNSUBSYS
For CICS regions running in a sysplex that is not using goal-oriented workload
management, this specifies the 4-character name to be used as the subsystem
identification in the monitoring SYSEVENT class records.

If you do not specify a name, the subsystem identification defaults to the first
four characters of the CICS generic APPLID.

For more information on the SYSEVENT class of monitoring data and the
subsystem identification, and about the implications for SYSEVENT recording in
a MVS workload management environment, see the CICS Performance Guide.

By specifying these identifiers as symbolic parameters in the PARM parameter in
the CICS startup JCL, you can use the same procedure for all the CICS regions in
the CICSplex. This is illustrated in Figure 42, which includes a JOB statement as
the first entry in the procedure. The JOB statement enables this procedure to use
the MVS JOB support for started tasks.

Specifying the DBCTL Subsystem Name
The example of a procedure for starting a CICS region, shown in Figure 42, uses
the INITPARM parameter for passing the name of the DBCTL subsystem to which

//CICSTASK JOB (accounting info),CLASS=X
//CICSTASK PROC START='AUTO',
// INDEX1='CTS110.CICS510',
// REGION='32M',
// SYSIDNT=',
// SIP='
//*
//* INDEX1 - High-level qualifier of CICS system data sets
//* REGION - Size of MVS region
//* START - Type of CICS start-up
//* SYSIDNT - Local system identifier of CICS region
//*
//***
//******************* EXECUTE CICS ************************
//***
//INITCICS EXEC PGM=DFHSIP,REGION=®ION,
// PARM=('START=&START,APPLID=CICS&SYSIDNT',
// 'INITPARM=(DFHDBCON='XX,&DBCTLID.'')',
// 'SYSIDNT=&SYSIDNT,SYSIN')

Figure 42. Defining the CICS System Initialization Parameters in the PARM Parameter

Chapter 17. Planning the CICS Startup Procedures 157

the CICS region is to connect. It also passes the suffix of the database resource
adaptor (DRA) table. If the region does not need to connect to DBCTL, the
INITPARM parameter is ignored.

The CICS System Data Sets

Each CICS region requires a number of system data sets without which CICS
cannot function. (In general, the data sets cannot be shared between the CICS
regions. Two exceptions are the CICS system definition (CSD) data set, which
contains resource definitions, and the DFHRPL library concatenation, which defines
shared program libraries.)

Some of the CICS system data sets could possibly be omitted from some types of
region, on the grounds that a particular resource manager region does not use that
data set.

For example, it is possible that a terminal-owning region will never need CICS
dump data sets, because it does not execute general user applications. However, it
is probable that it will run a number of special user-written application programs,
performing some system programmer functions. From time to time these could fail
and cause CICS to write a transaction dump.

In our standard CICS startup procedure shown in Figure 43 on page 159, we have
included DD statements for all the CICS system data sets. However, you might
want to vary the size of the data sets to suit the particular needs of the type of
region.

Defining the CICS Startup Procedure for Started Jobs
The procedure shown in Figure 43 on page 159 is designed to be used to start all
the CICS regions in a sysplex. Using a single procedure keeps the maintenance of
JCL to a minimum.

You are recommended to use the START command, and the JOBNAME parameter,
to invoke your procedure for starting each region. The JOBNAME parameter
overrides the job name specified in the procedure, ensuring a unique job name for
each CICS region. To ensure that the job names are unique across the sysplex, use
the &SYSCLONE symbolic parameter as part of the job name.

For example, you can issue the following command to start a CICS TOR in MVSA,
where &SYSCLONE is defined as the letter A.
START CICSTASK,JOBNAME=CICSDT&SYSCLONE.1,SYSIDNT=DT&SYSCLONE.1,SIP=T

In this example, the &SYSCLONE symbol resolves to the letter A, which
corresponds to the letter A in MVSA. If the START command is routed to another
MVS image, &SYSCLONE resolves to the character defined for that MVS. Note that
you can define the SYSCLONE symbolic parameter as 1 or 2 characters, but the
CICS naming convention uses 1 character only (the recovery group) to represent
the MVS image. If &SYSCLONE is defined for other purposes as a 2-character
symbol, you can define a user symbol for CICS startup JCL.

158 z/OS V1R1.0 Parallel Sysplex Application Migration

//CICSJOBS JOB (accounting information),MSGLEVEL=(1,1),MSGCLASS=A
//CICSTASK PROC START='AUTO',
// INDEX1='CTS110.CICS510',
// REGION='32M',
// DBCTL=',
// DB2=',
// OUTC='*',
// SYSIDNT=',
// RDRC='A',
// CSDIND='CICSD###',
// SIP='
//*
//***
//******************* EXECUTE CICS ************************
//***
//*
//INITCICS EXEC PGM=DFHSIP,REGION=®,TIME=1440,
// PARM=('START=&START,APPLID=CICSHT61,SYSIDNT=&SYSIDNT,SYSIN',
// 'INITPARM=(DFHDBCON='XX,&DBCTL',DSN2STRT='D#,&DB2'')')
//*
//SYSIN DD DISP=SHR,DSN=&INDEX1..CICSD###.SYSIN(DFHSIP&SIP.)
//***
//* THE CICS LIBRARY CONCATENATIONS
//STEPLIB DD DISP=SHR,DSN=&INDEX1..SDFHAUTH
//***
//* THE CICS LIBRARY (DFHRPL) CONCATENATION
//DFHRPL DD DISP=SHR,DSN=&INDEX1..SDFHLOAD
// DD DISP=SHR,DSN=SYS1.COBOL2.V132.COB2CICS
// DD DISP=SHR,DSN=SYS1.COBOL2.V132.COB2LIB
// DD DISP=SHR,DSN=PP.C3700512.V120CICS.LOADLIB
// DD DISP=SHR,DSN=PP.PLI.V23.PLILINK
//***
//* THE AUXILIARY TEMPORARY STORAGE DATASET
//DFHTEMP DD DISP=SHR,DSN=&INDEX1..CNTL.CICS&SYSIDNT..DFHTEMP
//***
//* THE INTRAPARTITION DATASET
//DFHINTRA DD DISP=SHR,DSN=&INDEX1..CNTL.CICS&SYSIDNT..DFHINTRA
//***
//* THE AUXILIARY TRACE DATASETS
//DFHAUXT DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHAUXT
//DFHBUXT DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHBUXT
//***
//* THE DUMP DATASETS
//DFHDMPA DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHDMPA
//DFHDMPB DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHDMPB
//***
//* THE CICS SYSTEM LOG DATASETS
//DFHJ01A DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHJ01A
//DFHJ01B DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHJ01B
//DFHJ01X DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHJ01X

Figure 43. A Sample CICS Startup Procedure for All CICS Regions in a CICSplex (Part 1 of
2)

Chapter 17. Planning the CICS Startup Procedures 159

Notes on Sample Procedure:

1. The JOB statement (for JOB support for started tasks) must be the first
statement in the procedure.

2. The terminal-owning regions and the application-owning regions in our CICSplex
both use CICS sequential terminal support to start transactions that are needed
at startup. Although these could be started by a PLTPI-specified program, it is
sometimes easier to use the CARDIN data set, defined in the CICS sample
terminal control table as a sequential terminal. The CARDIN DD statement in
our sample job uses the & symbol because the data sets are different for
terminal-owning regions and application-owning regions.

Starting the CICS Regions
The following start command, issued to start the tasks listed in the procedure
CICSRUN shown in Figure 44 on page 161, starts a set of CICS regions in each
MVS to which the start command is directed:

ROUTE mvid START CICSRUN

//***
//* AUTOMATIC JOURNAL ARCHIVING DATASETS
//DFHJACD DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHJACD
//DFHJPDS DD DISP=SHR,DSN=&INDEX1..CHCSD###.DFHJPDS
//DFHJOUT DD SYSOUT=(&RDRC,INTRDR)
//***
//* THE RESTART DATASET
//DFHRSD DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHRSD
//***
//* THE CICS LOCAL CATALOG DATASET
//DFHLCD DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHLCD
//***
//* THE CICS GLOBAL CATALOG DATASET
//DFHGCD DD DISP=SHR,DSN=&INDEX1..CICS&SYSIDNT..DFHGCD
//* AMP=('BUFND=5,BUFNI=20,BUFSP=122880')
//***
//* EXTRAPARTITION DATASETS
//DFHCXRF DD SYSOUT=&OUTC
//MASTOUT DD SYSOUT=&OUTC,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136)
//BATCHRDR DD SYSOUT=(&RDRC,INTRDR)
//LOGUSR DD SYSOUT=&OUTC,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136)
//MSGUSR DD SYSOUT=&OUTC,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136)
//PLIMSG DD SYSOUT=&OUTC,DCB=(DSORG=PS,RECFM=V,BLKSIZE=137)
//COUT DD SYSOUT=&OUTC,DCB=(DSORG=PS,RECFM=V,BLKSIZE=137)
//* LE/370 QUEUES
//CEEMSG DD SYSOUT=&OUTC
//CEEOUT DD SYSOUT=&OUTC
//**
//* CAFF TD QUEUE FOR ERROR MESSAGES
//CAFF DD SYSOUT=&OUTC
//***
//TRACEOUT DD SYSOUT=&OUTC
//SYSABEND DD SYSOUT=&OUTC
//PRINTER DD SYSOUT=&OUTC,DCB=BLKSIZE=121
//CARDIN DD DISP=SHR,DSN=&INDEX1..CHCSD###.SYSIN(CARD&SIP.)
// PEND
// EXEC CICSTASK
//* END OF CICS START-UP JOB

Figure 43. A Sample CICS Startup Procedure for All CICS Regions in a CICSplex (Part 2 of
2)

160 z/OS V1R1.0 Parallel Sysplex Application Migration

Using this technique, you need only one CICS startup procedure, such as
CICSTASK, and only one procedure to issue all the START commands.

//**
//* PROCEDURE TO START CICS REGIONS AS STARTED JOBS *
//* RACF PROFILES SUPPORTING THESE START COMMANDS ARE:
//*
//* STARTED PROFILES NAMED CICSTASK.CICSDA*
//* CICSTASK.CICSDF*
//* CICSTASK.CICSDT*
//*
//* AUTHORIZED TO RUN UNDER USERIDS CICSDA##
//* CICSDF##
//* CICSDT##
//*
//**
//CICSRUN PROC
//*
//DUMMY EXEC PGM=IEFBR14
//*
// START CICSTASK,JOBNAME=CICSDT&SYSCLONE.1,
// SYSIDNT=HT&SYSCLONE.1,SIP=T
//*
// START CICSTASK,JOBNAME=CICSDA&SYSCLONE.1,
// SYSIDNT=HA&SYSCLONE.1,SIP=A
//*
// START CICSTASK,JOBNAME=CICSDA&SYSCLONE.2,
// SYSIDNT=HA&SYSCLONE.2,SIP=A
//*
// START CICSTASK,JOBNAME=CICSDA&SYSCLONE.2,
// SYSIDNT=HA&SYSCLONE.2,SIP=A
//*
// START CICSTASK,JOBNAME=CICSDA&SYSCLONE.2,
// SYSIDNT=HA&SYSCLONE.2,SIP=A

Figure 44. Procedure to Start 5 CICS Tasks, 1 for Each CICS Region

Chapter 17. Planning the CICS Startup Procedures 161

162 z/OS V1R1.0 Parallel Sysplex Application Migration

Part 3. Migrating IMS Applications

This explains what changes to make to your IMS environment to migrate to a
Sysplex environment.

© Copyright IBM Corp. 1994, 2001 163

Migrating IMS TM Applications

164 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 18. Planning for IMS TM in a Sysplex Environment

For most customers, IMS TM can run in a Parallel Sysplex environment with no
changes to their current IMS environment, except those necessary to use
multisystem data sharing or to share message queues.

Some customers may have to make changes to their current IMS environment in
order to migrate to the Parallel Sysplex. For them, we make the following
recommendations:

v Set up your IMS RESLIBs so you can clone your IMS subsystems across the
Parallel Sysplex.

v Ensure that the IMSID is unique for each IMS subsystem in the Parallel Sysplex
so you can move your IMS subsystem to another MVS image if necessary.

v Ensure that all terminal names, LU names, and ETO user IDs in your network
are unique.

v Divide your network to balance your workload and to minimize network outage if
you lose one of your IMS subsystems.

v Convert batch jobs to BMP programs, especially in a data sharing environment,
to minimize the number of connections to the coupling facility.

See the IMS Version 5 or Version 6 library for more detail on the information given
below.

Cloning Your IMS Subsystems
While you cannot clone the system definition from a “master” IMS system
generation to other IMS subsystems, you can use many of the definitions from one
IMS subsystem as defaults for common resources cloned to other IMS subsystems.
Each IMS subsystem, however, must have a unique master terminal (MTO) and
secondary master terminal. There are also other definitions that must be unique,
such as Multiple Systems Coupling (MSC) definitions.

In order to clone IMS subsystems across a Parallel Sysplex, first determine how
many unique IMS RESLIB data sets you need. That is, determine what IMS
definitions need to be different for each IMS subsystem that cannot be overridden
during execution. Then perform IMS system definition stage 1 to create your
RESLIBs and put them on shared DASD. Use as many defaults or common coding
as possible during stage 1 so you can override these definitions during execution.

As an example of a default definition overridden during execution, let IMS set
APPLID=(IMS,IMS2,IMS3) in the COMM macro, then override IMS2 in the IMS
procedure using APPLID2=IMSB.

To minimize the number of unique stage 1 definitions you need, consider using the
IMS Extended Terminal Option (ETO) to reduce the number of LTERM names in
your stage 1.

See IMS/ESA Installation Volume 2: System Definition and Tailoring for more
information.

What to Share between IMS Subsystems in a Parallel Sysplex
Table 5 on page 166 lists the IMS data sets that should be shared between IMS
subsystems in a Parallel Sysplex, and those that should be unique for each

© Copyright IBM Corp. 1994, 2001 165

subsystem. All data sets, both shared and nonshared, should be shared DASD so
you can move your IMS subsystems across the Parallel Sysplex. In order to ensure
uniqueness for the data sets, name them using the IMSID as the data set high-level
qualifier.

Table 5. IMS Data Sets in a Parallel Sysplex

Shared data sets Nonshared data sets Comments

ACBLIBn
DBDLIB

FORMATn
IMSTFMT
MATRIXn

MODBLKSn
PGMLIB

PROCLIB
PSBLIB

RECONn
RESLIB

DFSOLDSn
DFSOLPnn
DFSWADSn

IEFRDRn
IMSMON
LGMSG

MODSTAT
MSDBCPn

MSDBDUMP
MSDBINIT

QBLKS
RDSn

SHMSG

ACBLIB contents should be identical across the Parallel
Sysplex even if you have multiple ACBLIBs. Likewise,
PSBLIB and DBDLIB contents should be identical across
the Parallel Sysplex even if you have multiple PSBLIBs
and DBDLIBs.

For performance reasons, you might want identical
FORMATn and PGMLIB data sets.

If you use MSC, you cannot share the MATRIXn,
MODBLKSn, or RESLIB data sets because they contain
information about each unique MSC link.

RLJCLLIB
RLRESLIB

IRLM data sets

It is possible to share the IMSMON data set serially, that is, dynamically allocate it
for each IMS subsystem in the Parallel Sysplex. Be sure to activate the IMS monitor
for only one IMS subsystem at a time, and deallocate the data set before activating
the monitor on another IMS subsystem.

In order to make cloning possible, ensure that all data is accessible across the
Parallel Sysplex and that your hardware connectivity is symmetric.

Ensure Unique IMSIDs
The IMSID is the IMS subsystem identifier. For online control regions, it must be
different from any other IMSID or non-IMS subsystem identifier defined to the MVS
under which IMS is running. The IMSID is also used to relate messages that are
routed to the MVS system console to the corresponding IMS subsystem.

The IMSID specified in the IMSCTRL macro (part of stage 1 of IMS system
definition) can be overridden at execution by specifying a keyword in the DFSPBxxx
member or a parameter on the EXEC statement.

Having unique IMSIDs lets you move your IMS subsystems to another MVS image
when necessary. Having unique IMSIDs also allows MVS automatic restart
management to restart a failing IMS on any MVS system or CPC in the Parallel
Sysplex without conflicting with any other IMS subsystems.

The following example shows how the IMSID fits into the overall picture of IMS in a
data sharing environment.

166 z/OS V1R1.0 Parallel Sysplex Application Migration

IMSA

IMS system definition statements include:
IMSCTRL IMSID=IMSA,DBRC=YES,IRLMNM=RLMA X

SYSTEM=(VS/2,(ALL,DB/DC),5.1)
DATABASE DBD=SHRDB,ACCESS=UP

PSB generation statements include:
PCB TYPE=DB,DBDNAME=SHRDB,PROCOPT=A

IMSB

IMS system definition statements include:
IMSCTRL IMSID=IMSB,DBRC=YES,IRLMNM=RLMB, X

SYSTEM=(VS/2,(ALL,DB/DC),5.1)
DATABASE DBD=SHRDB,ACCESS=UP

PSB generation statements include:
PCB TYPE=DB,DBDNAME=SHRDB,PROCOPT=A

IMSC

IMS system definition statements include:
IMSCTRL IMSID=IMSC,DBRC=YES,IRLMNM=RLMB, X

SYSTEM=(VS/2,BATCH)
DATABASE DBD=SHRDB,ACCESS=RD

PSB generation statements include:
PCB TYPE=DB,DBDNAME=SHRDB,PROCOPT=GOT

If MVS A terminates, you (or MVS automatic restart management) can bring up
IMSA on another MVS image, within the same CPC or a different CPC. By having
unique IMSIDs, you need not worry if there is already an IMS subsystem running on
the new MVS image, because that IMS will have a different IMSID.

MPP
BMP
IFP
(Update
Access)

MPP
BMP
IFP
(Update
Access)

C
T
R
L

C
T
R
L

DL/I Batch

(Read
Access)

Chapter 18. Planning for IMS TM in a Sysplex Environment 167

Ensure Unique Terminal Names, LU Names, and User IDs
Just as with the IMSID, you should ensure that your logical unit names (LU names)
and logical terminal (LTERM) names are unique across your IMS network. And you
should make your ETO user IDs unique across the Parallel Sysplex if they become
LTERMs (if they don’t, the user IDs need not be unique). With unique names, you
can move any terminal, LU 6.2 application, or user anywhere in the network without
your having to worry about duplicate names (which could result in a security
exposure in your network if data destined for one LU name, for example, was
delivered to a different LU name).

The following is an example of defining an LU name for IMS to VTAM. In the
example, IMS is given the SNA LU name SE40IMS.

SE40IMS APPL ACBNAME=SE40IMS,AUTH=(ACQ),EAS=100,PARSESS=YES

A logical terminal is a symbolic destination that maps to a VTAM node or a BTAM
physical terminal. Each logical terminal has an installation-defined name, an LTERM
name. You should define a convention for naming LTERMs. One method is to have
the LTERM name consist of a combination of the workstation and component
identifications. For example, IMS considers the 4704 keyboard and display system
components as one component, the 4706 magnetic stripe reader as another
component, and the 4710 receipt printer as yet another component. Thus,
workstation 100 could have three components: WS100DS (the 4704), WS100MS
(the 4706), and WS100RP (the 4710). Such a convention would permit an
application running in a message processing program (MPP) region to interrogate
the I/O PCB (LTERM name field) to identify the workstation and then be able to
specify the proper alternate PCB for output using the CHNG call.

Each IMS LTERM is associated with one input and one output IMS component. The
input and output components can be the same component, or different components
can be specified. Conversely, IMS does not prevent multiple input or output
LTERMs from being associated with a single component. However, doing so may
cause problems with determining input components or presenting output.

You can establish relationships between input and output components by using the
NAME macro during IMS system definition. Using this macro allows the terminal to
indicate its input component and causes output to be returned to a component
indicated during IMS system definition. Proper definition and use of input
components can reduce or eliminate the need for LTERM naming conventions,
MPP change calls, and inserts to alternate PCBs.

APPC/IMS does not use an LTERM for input. APPC/IMS provides two facilities that
are similar to LTERMs for output:

v LU 6.2 descriptors. Using LU 6.2 descriptors allows an IMS LTERM name to
define an LU 6.2 destination (specifying LUNAME, TPNAME, and other LU 6.2
destination characteristics). These LU 6.2 LTERMs can be used in the same way
as regular LTERMs in IMS applications.

v Side information, a symbolic destination name that contains system-defined
values provided by CPI communications.

168 z/OS V1R1.0 Parallel Sysplex Application Migration

Divide Your Network
To minimize network outage if one of your IMS subsystems should fail, you should
divide your network and transaction traffic. One way to accomplish this division is to
use IMS Multiple Systems Coupling (MSC). Another way is to use shared message
queues (see “Chapter 19. Planning for IMS/ESA Version 6 in a Parallel Sysplex
Environment” on page 175).

MSC connects geographically dispersed IMS systems in a way that allows
programs and operators of one system access to programs and operators of the
connected systems. Communication is permitted between two or more (up to 255)
IMS systems running on any supported combination of MVS systems, including the
Parallel Sysplex.

Advantages of MSC
MSC can extend the throughput of an IMS system beyond the capacity of a single
processor. This is possible if the IMS applications can be partitioned among
systems such that either:

v Applications execute in more than one system with database contents split
between systems (horizontal partitioning).1

v Applications execute in one system (or Parallel Sysplex) with the complete
database that they reference attached to that system (vertical partitioning); the
transactions can originate in any system.

A transaction originates in what is called the local system and can be processed in
either the local system or a remote system. When a transaction is processed in a
remote system, the input LTERM name in the local system is carried over as part of
the message. If the processing program uses an alternate PCB to direct messages
to other than the input terminals, the destinations need to be declared as remote
unless directed routing is used. The technique is to define the LTERM names for all
input terminals with NAME macros. You place the NAME macros in a group after
the MSNAME macro. Then you have a set of LTERMs that collectively can occur in
several system definitions. For example, TERMA can be present in the input system,
in an intermediate system, and in the processing system.

You do not have to declare every terminal in the remote system that is entering
transactions, just those that enter traffic destined for this local system. If the LTERM
in the remote system is for an ETO terminal that enters transactions destined for
this system, define the LTERMs using ETO MSC descriptors instead of NAME
macros.

Planning for MSC
When planning for the network, keep in mind that message queues for an input
system or an intermediate system have to allow for the remote transactions to be
enqueued. The message lengths and their expected loads must be taken into
account when allocating space for the message queues. Similarly, you have to
allow for the presence of these messages in I/O buffers, even though they are not
going to be processed in that system.

1. Horizontal partitioning is beyond the scope of a Parallel Sysplex, but could be important if you have geographically remote IMS
subsystems in your network.

Chapter 18. Planning for IMS TM in a Sysplex Environment 169

Although MSC physical and logical links continue to be predefined through IMS
system definition, using ETO you can dynamically create MSC remote LTERMs
during IMS initialization. ETO also allows you to associate one or more message
queues with an MSC logical link.

Each IMS system must be assigned at least one unique system identifier (SYSID)
in the MSC system definition process. This SYSID is a local SYSID for the owning
system and a remote SYSID for any other IMS system that has a path to this
system.

When planning for network availability, remember that MSC does not increase the
availability of a single IMS subsystem, but does help increase the availability of your
overall IMS network.

Finally, here are some major design considerations for MSC:

v Minimizing resource consumption by defining suitable connections between the
systems

v Balancing resource demand by distributing functions among systems to obtain
optimal performance

v Program design for multisystem conversational transactions

Workload Balancing Using MSC
In a Parallel Sysplex especially, you can use MSC to balance your workload across
the Parallel Sysplex as well as to minimize network outages. You can define an IMS
transaction in a Parallel Sysplex so that no matter where a transaction originates, it
always runs on a particular IMS subsystem.

You define each IMS transaction as either local or remote. When a transaction
reaches an IMS subsystem, IMS checks to see if the transaction is local or remote;
if local, IMS processes the transaction; if remote, IMS passes the transaction along
to another IMS subsystem across its MSC links. For example, TRANA can be defined
to run on IMSA; if TRANA originates on IMSB, the transaction is processed on IMSA
because IMSB knows that TRANA is remote and sends it to IMSA (for which TRANA is
local).

You can use the IMS Input Message Routing exit routine to balance workload
dynamically by allowing the exit routine to determine whether to process a local
transaction or to send it to another IMS subsystem for processing. This means that
you can define all your transactions as local across the Parallel Sysplex and let the
exit routine route each transaction dynamically to any IMS subsystem.

You can also use the IMS Program Routing exit routine to allow your application
programs to dynamically balance their workload by using program-to-program
switches to reroute work to any IMS subsystem in the Parallel Parallel Sysplex.

In IMS Version 6, you can also perform workload balancing using VTAM generic
resources or shared message queues. For more information on using VTAM
generic resources, see “Planning for Using VTAM Generic Resource Groups” on
page 178. For more information on using shared message queues, see “Planning
for a Shared-Queues Environment” on page 176.

170 z/OS V1R1.0 Parallel Sysplex Application Migration

Flow of Data within Multiple Systems
The flow of a transaction in a multisystem environment requires additional steps
than those in a single system environment. These steps are illustrated in Figure 45
on page 172, and explained as follows:

v In the input terminal system, a remote transaction entered from a terminal (1) is
placed on the message queue (2) of the terminal system with the destination of
the remote transaction name. The message is queued to the MSNAME
associated with the specified remote destination.

v MSC support is responsible for removing the message from the local message
queue (3), sending it across the MSC link (4), and placing it on the message
queue of the processing system (5) to be processed by the application program
(6).

v Subsequently, when the application program processes the message and sends
a reply back to the originating IMS system as indicated by the SYSID of the
message.

v The reply message (7) is placed first on the message queue in the processing
system with a destination of the input LTERM (8).

v MSC support is responsible for removing the message from the message queue
(9) and sending it back across the MSC link (10).

v MSC places the message on the message queue of the terminal system (11),
and sends it to the input terminal (12).

Chapter 18. Planning for IMS TM in a Sysplex Environment 171

Convert Batch Jobs to BMP Programs
You should convert batch programs to batch-oriented batch message processing
(BMP) programs. Each batch program in a multisystem data sharing environment
requires a separate connection to the coupling facility; all BMP programs running in
one IMS subsystem require only one connection to the coupling facility. Converting
a batch program to a batch-oriented BMP program can be advantageous for the
following reasons as well:

v BMPs can send output to the message queues.

v BMPs can access IMS data entry databases (DEDBs) and IMS main storage
databases (MSDBs), as well as IMS full-function DL/I databases.

Figure 45. Multiple IMS Systems Transaction Flow

172 z/OS V1R1.0 Parallel Sysplex Application Migration

v BMPs simplify program recovery because logging goes to a single system log.2

v Restart can be done automatically from the last checkpoint without changing the
JCL.

Remember, if you are running in the DBCTL environment, BMPs cannot send
output to the message queues and cannot access MSDBs.

Converting batch programs to BMP programs enables you to reduce the “batch
window” because you can run the BMP programs with your online workload, instead
of having to wait until the online system is not running. This also allows you to keep
the data more current.

If you use data sharing, you can run batch programs concurrently with online
programs. You can also use BMP programs as an alternative to sharing data
between batch programs and your online programs.

Recommendation: Code your checkpoints in a way that makes them easy to
modify. Converting a batch program to a BMP or converting a batch program to use
data sharing requires more frequent checkpoints to minimize the time needed for
backout and recovery if the program fails. More frequent checkpoints can also
reduce the number of database resources dedicated to one application program at
any one time.

There are two requirements for a batch program to be converted to a BMP:

v The program must have an I/O PCB. You can obtain an I/O PCB in batch by
specifying the compatibility (CMPAT) option in the program specification block
(PSB) for the program.

v BMPs must issue checkpoint calls more frequently than batch programs.

Finally, if a program fails while running in a batch region, you must restart it in a
batch region. If a program fails in a BMP region, you must restart it in a BMP
region.

MVS Resource Management
IMS support for the MVS Workload Manager (WLM) helps MVS balance the
workload mix and prioritization to meet your business objectives. IMS provides MVS
with information about the status of IMS units of work (UOWs). MVS uses this
information to decide how to allocate its computing resources.

IMS assists the WLM by helping to establish monitoring environments for the UOWs
that are under IMS control. The monitoring environments are performance blocks
that are built by MVS. IMS initializes these performance blocks with the service
classification for the UOW, the time the UOW started, and whether the UOW is
active or waiting. IMS then supplies the monitoring environment with information
such as total response time and any delays associated with a UOW.

The WLM monitors the UOWs while they are processing by periodically sampling
the monitoring environments. If there is contention for resources among the UOWs,
the WLM dynamically adapts the resources to ensure that the most critical work
completes on time, while less critical work is deferred. The WLM does this by

2. If your installation uses direct access storage for the system log in batch, you can specify that you want dynamic backout for the
program. In that case, batch recovery is similar to BMP recovery except, of course, with batch you need to manage multiple logs.

Chapter 18. Planning for IMS TM in a Sysplex Environment 173

referring to the user-defined objectives for each type of UOW. These objectives may
be a desired response time or other performance-related goals.

Availability and Recovery
In a Parallel Sysplex, if one processor or MVS system fails or becomes unavailable,
you can restart your IMS subsystems on another processor or MVS system. If you
have ensured unique IMSIDs, terminal and LU names, and user IDs, and have put
nonshared data sets on shared DASD, you can restart the failed IMS anywhere in
the Parallel Sysplex. The restarted IMS subsystem can resume its normal workload,
especially if you are using multisystem data sharing.

174 z/OS V1R1.0 Parallel Sysplex Application Migration

Chapter 19. Planning for IMS/ESA Version 6 in a Parallel
Sysplex Environment

This chapter describes how to plan for IMS/ESA Version 6 in a Parallel Sysplex
environment.

“Parallel Sysplex Migration Requirements”
“Planning for a Shared-Queues Environment” on page 176
“Planning for Using VTAM Generic Resource Groups” on page 178
“Planning for OSAM Database Cache Migration” on page 180
“Planning for Shared SDEPs Migration” on page 180

Parallel Sysplex Migration Requirements
Migrating IMS to a Parallel Sysplex environment enables you to use of a number of
the new Version 6 enhancements in addition to those available in Version 5.

Migrating IMS
The following is a sample migration path for IMS to the Parallel Sysplex
environment:
1. Migrate the MVS level to MVS SP 5.1 (or higher) or OS/390 (or higher).
2. Upgrade your hardware to that required for the Parallel Sysplex environment

(for example, Parallel Sysplex Timer and coupling facility).
3. Define your coupling facility structure sizes to be 512 kilobytes or more. This

size allows you to use both primary and optional overflow structures. Create
structures for each of the following IMS functions:
v Data sharing
v Shared message queues and shared Expedited Message Handler (EMH)

queues
v OSAM database cache
v Shared VSO DEDB areas
v Shared SDEPs

Recommendation: Place high-use structures on separate coupling facilities.
For example, your IMS data sharing structures should be on a different coupling
facility from your shared-queue structures. Likewise, your DB2 and VSAM
structures should be on separate coupling facilities. You can place low-use
structures (like RACF) on any coupling facility that has enough space.

4. Bring up the Parallel Sysplex environment.
5. Update IRLM start-up procedures to remove VTAM dependencies and to define

the LOCK structure and group name (for data sharing).
6. Start up IMS data sharing with IMS Version 4 or Version 5 using IRLM 2.1 and

a coupling facility.
7. Migrate the IMS level to Version 6.
8. When all the IMS systems are at the Version 6 level, you can start the

OSAM/VSAM structures and begin sharing messages.

Migrating Your Data-Sharing Environment
When implementing Parallel Sysplex data sharing, you should review your naming
conventions for IMS log data sets. Troubleshooting and recovery can be simplified if
log data sets can be tied to the IMS subsystem that created them.

The following are two posssible paths for migrating from nonParallel Sysplex to
Parallel Sysplex data sharing (or from IRLM 1.5 to IRLM 2.1):

© Copyright IBM Corp. 1994, 2001 175

1. Migration Path 1

a. Migrate to MVS SP 5.1 or later, or OS/390 or later.

b. Use IMS Version 4, or Version 5 with the IRLM 1.5. This is the nonParallel
Sysplex data sharing environment; no structure names are specified.
Maintain your existing version of IRLM until IRLM 2.1 is running. This
permits easy backing out if any problems occur with the migration from
IRLM 1.5 to 2.1.

c. Use IMS Version 4, or Version 5 with IRLM 2.1. Specify IRLM structure
names only.

d. Use IMS Version 6 with IRLM 2.1. Specify IRLM, OSAM, and VSAM
structure names.

2. Migration Path 2

a. Migrate to MVS SP 5.1.

b. Use IMS Version 6 with IRLM 1.5. This is the nonParallel Sysplex data
sharing environment; no structure names are specified. Maintain your
existing version of IRLM until IRLM 2.1 is running. This permits easy
backing out if any problems occur with the migration from IRLM 1.5 to 2.1.

c. Use IMS Version 6 with the IRLM 2.1. Specify IRLM, OSAM, and VSAM
structure names.

Planning for Migration to IMS Version 6
This section describes how to plan for migrating to the major new functions of IMS
Version 6.

Planning for a Shared-Queues Environment
Operating in a shared-queues environment allows multiple IMS subsystems in a
Parallel Sysplex environment to share IMS message queues and Expedited
Message Handler (EMH) message queues. A shared-queues environment provides
you a single-image view of multiple IMS sys and distributes processing loads
between the IMS subsystems. Transactions entered on one IMS system can be
made available on the shared queues to any other IMS system capable of
processing them. Results of these transactions are then returned to the initiating
terminal. End users do not need to be aware of these activities; their view of
processing is as if they were operating in a single-system environment.

Migrating to a Shared-Queues and Shared-EMH Environment
When migrating to a shared-queues and shared-EMH environment, do the
following:

v Ensure that you have installed the required software. See “Required Components
of a Shared-Queues Environment” on page 177.

v Allocate sufficient space in the coupling facility for the primary and (optional)
overflow structures.

v Place the Fast Path and full-function queues in separate coupling facilities.

Benefits of Using Shared Queues
The major benefits of operating in a shared-queues environment are:

Automatic workload balancing
A message placed on a shared queue can be processed by any
participating IMS system that is available for work.

176 z/OS V1R1.0 Parallel Sysplex Application Migration

Incremental growth
You can add new IMS subsystems as workload increases.

Increased reliability
If one IMS subsystem fails, work that is placed on a shared queue can still
be processed by other IMS systems, and with VTAM generic resources, the
output can be returned to the originating terminal.

Recommendations:
v Enabling shared queues does not require the use of VTAM generic resource

groups; however, IBM recommends that you use the two functions together.
v IBM recommends that all data in a Parallel Sysplex be shared across the Parallel

Sysplex.

Required Components of a Shared-Queues Environment
Although you can operate many different configurations of a shared-queues env the
required components for shared-queues processing, shown in Figure 46 on
page 178, include:

Common Queue Server (CQS)
One CQS is required for each client. Each CQS accesses the shared
queues, which reside in coupling facility list structures.

Restriction: With IMS Version 6, each CQS can have only one client.

CQS client
One or more IMS DB/DC or DCCTL subsystems that can access the
shared queues using CQS client requests.

MVS coupling facility list structures
A type of coupling facility structure that maintains the shared queues.

MVS system log
One MVS system log is used for each structure pair. CQS places recovery
information about work it has processed and about the list structure pair in
the MVS log streams. These log streams are then shared by all CQSs that
access the list structure pair.

CQS checkpoint data set
One CQS checkpoint data set is maintained for each structure pair of each
CQS. The CQS checkpoint data set contains CQS system checkpoint
information.

CQS structure recovery data sets (SRDSs)
CQS maintains two SRDSs for each structure pair for recovery of the
shared queues on the structures. The SRDSs maintain structure checkpoint
information for the shared queues.

Chapter 19. Planning for IMS/ESA Version 6 in a Parallel Sysplex Environment 177

Planning for the Common Queue Server (CQS)
The Common Queue Server (CQS) is a subsystem which IMS uses to
communicate with shared message queues. You can use IMS commands to initiate
CQS requests. The CQS address space is started by the IMS subsystem.

CQS performs the following services:

v Notifies registered clients when work exists on the shared queues

v Provides clients with an interface for accessing shared queues and CQS

v Writes CQS system checkpoint information to CQS checkpoint data set

v Writes structure checkpoint information to an SRDS for recovery of a
shared-queues list structure

v Provides structure recovery and overflow processing for the shared-queues list
structure

v Drives CQS client and user-supplied exit routines

v Provides the Log Print utility, with sample JCL allowing you to print log records
from the MVS log.

Planning for Using VTAM Generic Resource Groups
This section presents an overview of VTAM generic resources. For more
information on how to use VTAM generic resources with IMS, see IMS/ESA
Administration Guide: Transaction Manager.

If you are operating in a Parallel Sysplex environment and running multiple IMS
systems, you can initiate a session using the name of a VTAM generic resource
group. VTAM balances the sessions among generic resource members in a generic

Figure 46. Components of a Shared-Queues Environment

178 z/OS V1R1.0 Parallel Sysplex Application Migration

resource group. If you do not require the services of a specific IMS system, initiate
the session using a generic resource name, rather than the APPLID name of a
specific IMS system.

The benefits of using VTAM generic resource groups include:

Automatic session workload balancing
Using VTAM generic resources is complementary to using shared queues;
generic resources distributes network traffic among multiple IMS
subsystems, while shared queues distributes back-end application
workload.

Single-image resources
You can access multiple IMS subsystems using a single generic resource
name, offering a single-system image while using the resources of many
IMS subsystems.

Enhanced IMS system availability
In general, if one IMS subsystem fails, you can log onto another IMS
subsystem in that generic resource group.

Exception: If a terminal is an Intersystem Communication (ISC) terminal,
a SLU P terminal, or a Finance terminal, you might not be able to log on to
that terminal.

Share global messages
You can obtain messages on shared queues from any IMS subsystem in
the generic resource group.

Recommendation: If a terminal is in conversation or response mode, do
not attempt to obtain messages from it.

Requirements for Using VTAM Generic Resource Groups
To participate in session balancing using generic resource groups, ensure your
installation does each of the following:

v Operates the members of the generic resource group in a Parallel Sysplex
environment.

v Operates the minimum release of VTAM and OS/390 or z/OS required for
non-APPC generic resources or APPC/IMS generic resources.

v Identifies the IMS subsystems that belong to the generic resource group (by
specifying the same IMS generic resource name in the GRSNAME execution
parameter of each IMS subsystem). You can also use the /START VGRS
command, and include the GRSNAME parameter.

v Defines an APPC generic resource name to MVS, as required for LU 6.2
communications. Define this name on the GRNAME parameter of the LUADD
statement in the APPC/MVS APPCPMxx member.

v Defines all IMS subsystems that belong to a generic resource group, using
equivalent specifications.

Related Reading:

v For information on minimum release levels required for non-APPC and APPC
generic resources, see IMS/ESA Release Planning Guide

v For information on the /START VGRS command, see IMS/ESA Operator’s
Reference.

.

Chapter 19. Planning for IMS/ESA Version 6 in a Parallel Sysplex Environment 179

Restrictions on Using VTAM Generic Resource Groups
When creating a generic resource group, system programmers should keep in
mind:

v The target of an MSC link cannot be a generic resource name.

v IMS XRF subsystems cannot participate as members of a generic resource
group; however, they can be members of the same shared-queues group.

Planning for OSAM Database Cache Migration
To plan for OSAM database cache migration, do each of the following:

v Review the CFRM policy to ensure it is valid for data caching.

v Choose which OSAM subpools to define with the caching option, and choose the
level of caching to be used.

To enable OSAM database coupling facility caching, the co parameter is used to
define OSAM subpools, and is now part of the IOBF statement. For a description
of the co parameter values, see IMS/ESA Installation Volume 2: System
Definition and Tailoring

You can assign a specific database data set to a specific subpool by defining an
identifier (the id parameter) on the IOBF and the DBD statements. By specifying
those subpools that can be shared by different database data sets (or those
subpools that can be used exclusively by a single database data set), you can
control subpool usage.

You can control the subpools that participate in data caching by using the co
parameter. Also, by using an identifier to assign specific database data sets to
specific subpools, you can select the database data sets that participate in data
caching.

Planning for Shared SDEPs Migration
No special migration issues exist for this function. You can migrate back-and-forth
between IMS releases without an unload, reload, or image copy base change.

Planning for Shared VSO DEDB Areas Migration
No special migration issues exist for this function. However, if you choose to
migrate your MSDBs to DEDBs or to VSO DEDB areas, see IMS/ESA Release
Planning Guide.

180 z/OS V1R1.0 Parallel Sysplex Application Migration

Part 4. Appendixes

© Copyright IBM Corp. 1994, 2001 181

182 z/OS V1R1.0 Parallel Sysplex Application Migration

Appendix. Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2001 183

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States
and/or other countries:

AD/Cycle
Advanced Peer-to-Peer Networking
APPN
BatchPipes
BookManager
C/370
CBIPO
CBPDO
CICS
CICSPlex
CICS/ESA
DATABASE 2
DB2
DFSMS
DFSMShsm
DFSMS/MVS
Enterprise Systems Connection Architecture
ES/9000
ESCON
Hardware Configuration Definition
Hiperbatch
IBM
IBMLink
IMS/ESA
MVS/DFP
MVS/ESA
NetView
OPC
OpenEdition
OS/2

184 z/OS V1R1.0 Parallel Sysplex Application Migration

OS/390
Parallel Sysplex
Processor Resource/Systems Manager
PR/SM
RACF
RAMAC
Resource Link
Resource Measurement Facility
RMF
S/390
SOMobjects
SP
Sysplex Timer
System/390
SystemPac
VTAM
z/OS

Other company, product, and service names might be trademarks or service marks
of others.

Appendix. Notices 185

186 z/OS V1R1.0 Parallel Sysplex Application Migration

Glossary

Sources of Terms and Definitions
This glossary includes terms and definitions from:

v The IBM Dictionary of Computing New York:
McGraw-Hill, 1994.

v The Information Technology Vocabulary
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

Explanation of Cross-References
The following cross-references are used in this
glossary:

Contrast with. This refers to a term that has
an opposed or substantively different meaning.
See. This refers the reader to multiple-word
terms in which this term appears.
See also. This refers the reader to terms that
have a related, but not synonymous, meaning.

A
ACDS. Active control data set.

ANO/MVS. Automated Network Operations.

AOC/MVS. Automated Operations Control. The
licensed program System Automation for OS/390
includes all of the function previosuly provided by
AOC/MVS.

AOR. Application-owning region

APPN. Advanced Peer-to-Peer Networking.

B
basic mode. A central processor mode that does not
use logical partitioning. Contrast with logically
partitioned (LPAR) mode.

batch message processing (BMP) program. An IMS
batch processing program that has access to online
databases and message queues. BMPs run online, but

like programs in a batch environment, they are started
with job control language (JCL).

batch-oriented BMP program. A BMP program that
has access to online databases and message queues
while performing batch-type processing. A
batch-oriented BMP does not access the IMS message
queues for input or output. It can access online
databases, GSAM databases, and MVS files for both
input and output.

BMP. Batch message processing (BMP) program.

C
cache structure. A coupling facility structure that
enables high-performance sharing of cached data by
multisystem applications in a sysplex. Applications can
use a cache structure to implement several different
types of caching systems, including a store-through or a
store-in cache.

cache structure services. MVS services that enable
applications in a sysplex to perform operations such as
the following on a coupling facility cache structure:
v Manage cache structure resources
v Store data into and retrieve data from a cache

structure
v Manage accesses to shared data
v Determine when shared data has been changed
v Determine whether a local copy of shared data is

valid.

CBPDO. Custom Built Product Delivery Offering.

CEC. Synonym for central processor complex (CPC).

central processor (CP). The part of the computer that
contains the sequencing and processing facilities for
instruction execution, initial program load, and other
machine operations.

central processor complex (CPC). A physical
collection of hardware that includes main storage, one
or more central processors, timers, and channels.

CFRM. Coupling facility resource management.

channel-to-channel (CTC). Refers to the
communication (transfer of data) between programs on
opposite sides of a channel-to-channel adapter (CTCA).

channel-to-channel adapter (CTCA). An input/output
device that is used by a program in one system to
communicate with a program in another system.

CICS. Customer Information Control System.

CICSplex. A group of connected CICS regions.

© Copyright IBM Corp. 1994, 2001 187

CICSPlex SM. CICSPlex System Manager

CMOS. Complementary metal-oxide semiconductor.

COMMDS. Communications data set.

complementary metal-oxide semiconductor
(CMOS). A technology that combines the electrical
properties of positive and negative voltage requirements
to use considerably less power than other types of
semiconductors.

couple data set. A data set that is created through the
XCF couple data set format utility and, depending on its
designated type, is shared by some or all of the MVS
systems in a sysplex. See also sysplex couple data set.

coupling facility. A special logical partition that
provides high-speed caching, list processing, and
locking functions in a sysplex.

coupling facility channel. A high bandwidth fiber
optic channel that provides the high-speed connectivity
required for data sharing between a coupling facility and
the central processor complexes directly attached to it.

coupling services. In a sysplex, the functions of XCF
that transfer data and status between members of a
group residing on one or more MVS systems in the
sysplex.

CP. Central processor.

CPC. Central processor complex.

cross-system coupling facility (XCF). XCF is a
component of MVS that provides functions to support
cooperation between authorized programs running
within a sysplex.

CTC. Channel-to-channel.

D
DAE. Dump analysis and elimination.

DASD. Direct access storage device.

data sharing. The ability of concurrent subsystems
(such as DB2 or IMS DB) or application programs to
directly access and change the same data while
maintaining data integrity.

DBCTL. IMS Database Control.

DBRC. Database Recovery Control.

DB2. DATABASE 2 for MVS/ESA.

DB2 data sharing group. A collection of one or more
concurrent DB2 subsystems that directly access and
change the same data while maintaining data integrity.

DB2 PM. DB2 Performance Monitor.

DFSMS. Data Facility Storage Management
Subsystem.

dpAM. IBM SystemView Data Processing Accounting
Manager/MVS.

E
EMIF. ESCON Multiple Image Facility.

Enterprise Systems Connection (ESCON). A set of
products and services that provides a dynamically
connected environment using optical cables as a
transmission medium.

EPDM. IBM SystemView Enterprise Performance Data
Manager/MVS.

ESCD. ESCON Director.

ESCM. ESCON Manager. The licensed program
System Automation for OS/390 includes all of the
function previosuly provided by ESCM.

ESCON. Enterprise Systems Connection.

ETR. External Time Reference. See also Sysplex
Timer.

F
FOR. File-owning region.

frame. For a System/390 microprocessor cluster, a
frame contains one or two central processor complexes
(CPCs), support elements, and AC power distribution.

G
global resource serialization. A function that provides
an MVS serialization mechanism for resources (typically
data sets) across multiple MVS images.

global resource serialization complex. One or more
MVS systems that use global resource serialization to
serialize access to shared resources (such as data sets
on shared DASD volumes).

GSAM. Generalized Sequential Access Method.

GTF. Generalized trace facility.

H
Hardware Management Console. A console used to
monitor and control hardware such as the System/390
microprocessors.

HCD. Hardware Configuration Definition.

188 z/OS V1R1.0 Parallel Sysplex Application Migration

highly parallel. Refers to multiple systems operating
in parallel, each of which can have multiple processors.
See also n-way.

I
ICMF. Integrated Coupling Migration Facility.

image server. A high-capacity optical storage device
or a computer that each computer and image
workstation on a network can use to access and
retrieve image objects that can be shared among the
attached computers and image workstations.

IMS. Information Management System.

IMS DB. Information Management System Database
Manager.

IMS DB data sharing group. A collection of one or
more concurrent IMS DB subsystems that directly
access and change the same data while maintaining
data integrity.

IMS TM. Information Management System Transaction
Manager.

in-doubt period. The period during which a unit of
work is pending during commit processing that involves
two or more subsystems. See also in-doubt work unit.

in-doubt work unit. In CICS/ESA and IMS/ESA, a
piece of work that is pending during commit processing;
if commit processing fails between the polling of
subsystems and the decision to execute the commit,
recovery processing must resolve the status of any work
unit that is in doubt.

integrated operations workstation. A programmable
workstation (PWS) from which an individual can access
multiple products to perform a set of tasks, in some
cases without knowing which particular product
performs a specific task.

IOCDS. Input/output configuration data set.

IOCP. Input/output configuration program.

IODF. Input/output definition file.

IRLM. Internal resource lock manager.

ISPF. Interactive System Productivity Facility.

J
JES2. Job Entry Subsystem 2.

JES3. Job Entry Subsystem 3.

L
LIC. Licensed Internal Code.

list structure. A coupling facility structure that enables
multisystem applications in a sysplex to share
information organized as a set of lists or queues. A list
structure consists of a set of lists and an optional lock
table, which can be used for serializing resources in the
list structure. Each list consists of a queue of list entries.

list structure services. MVS services that enable
multisystem applications in a sysplex to perform
operations such as the following on a coupling facility
list structure:
v Read, update, create, delete, and move list entries in

a list structure
v Perform serialized updates on multiple list entries in a

list structure
v Monitor lists in a list structure for transitions from

empty to non-empty.

lock structure. A coupling facility structure that
enables applications in a sysplex to implement
customized locking protocols for serialization of
application-defined resources. The lock structure
supports shared, exclusive, and application-defined lock
states, as well as generalized contention management
and recovery protocols.

lock structure services. MVS services that enable
applications in a sysplex to perform operations such as
the following on a coupling facility lock structure:
v Request ownership of a lock
v Change the type of ownership for a lock
v Release ownership of a lock
v Manage contention for a lock
v Recover a lock held by a failed application.

logical partition (LP). A subset of the processor
hardware that is defined to support an operating
system. See also logically partitioned (LPAR) mode.

logically partitioned (LPAR) mode. A central
processor complex (CPC) power-on reset mode that
enables use of the PR/SM feature and allows an
operator to allocate CPC hardware resources (including
central processors, central storage, expanded storage,
and channel paths) among logical partitions. Contrast
with basic mode.

loosely coupled. A multisystem structure that requires
a low degree of interaction and cooperation between
multiple MVS images to process a workload. See also
tightly coupled.

LP. Logical partition.

LPAR. Logically partitioned (mode).

Glossary 189

M
m-image. The number (m) of MVS images in a
sysplex. See also n-way.

massively parallel. Refers to thousands of processors
in a parallel arrangement.

member. A specific function (one or more
modules/routines) of a multisystem application that is
defined to XCF and assigned to a group by the
multisystem application. A member resides on one
system in the sysplex and can use XCF services to
communicate (send and receive data) with other
members of the same group.

microprocessor. A processor implemented on one or
a small number of chips.

mixed complex. A global resource serialization
complex in which one or more of the systems in the
global resource serialization complex are not part of a
multisystem sysplex.

MP. Multiprocessor.

MRO. Multiregion operation.

MSC. Multiple Systems Coupling.

multi-MVS environment. An environment that
supports more than one MVS image. See also MVS
image and sysplex.

Multiple Systems Coupling (MSC). An IMS facility
that permits geographically dispersed IMS subsystems
to communicate with each other.

multiprocessing. The simultaneous execution of two
or more computer programs or sequences of
instructions. See also parallel processing.

multiprocessor (MP). A CPC that can be physically
partitioned to form two operating processor complexes.

multisystem application. An application program that
has various functions distributed across MVS images in
a multisystem environment.

multisystem environment. An environment in which
two or more MVS images reside in one or more
processors, and programs on one image can
communicate with programs on the other images.

multisystem sysplex. A sysplex in which two or more
MVS images are allowed to be initialized as part of the
sysplex. See also single-system sysplex.

MVS image. A single occurrence of the MVS/ESA
operating system that has the ability to process work.

MVS system. An MVS image together with its
associated hardware, which collectively are often
referred to simply as a system, or MVS system.

MVS/ESA. Multiple Virtual Storage/ESA.

MVSCP. MVS configuration program.

N
n-way. The number (n) of CPs in a CPC. For example,
a 6-way CPC contains six CPs.

NJE. Network job entry.

O
OLTP. Online transaction processing.

OPC/ESA. Operations Planning and Control.

operating system (OS). Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output
control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible. (T)

P
parallel processing. The simultaneous processing of
units of work by many servers. The units of work can be
either transactions or subdivisions of large units of work
(batch). See also highly parallel.

Parallel Sysplex. A sysplex that uses one or more
coupling facilities.

partitionable CPC. A CPC that can be divided into 2
independent CPCs. See also physical partition,
single-image mode, MP, side.

physical partition. Part of a CPC that operates as a
CPC in its own right, with its own copy of the operating
system.

physically partitioned (PP) configuration. A system
configuration that allows the processor controller to use
both central processor complex (CPC) sides as
individual CPCs. The A-side of the processor controller
controls side 0; the B-side of the processor controller
controls side 1. Contrast with single-image (SI)
configuration.

PR/SM. Processor Resource/Systems Manager.

processor controller. Hardware that provides support
and diagnostic functions for the central processors.

Processor Resource/Systems Manager (PR/SM).
The feature that allows the processor to use several
MVS images simultaneously and provides logical
partitioning capability. See also LPAR.

190 z/OS V1R1.0 Parallel Sysplex Application Migration

Q
QOR. Queue-owning region.

R
RACF. Resource Access Control Facility.

RMF. Resource Measurement Facility.

S
SCDS. Source control data set.

SDSF. System Display and Search Facility.

SEC. System Engineering Change.

serialized list structure. A coupling facility list
structure with a lock table containing an array of
exclusive locks whose purpose and scope are
application-defined. Applications can use the lock table
to serialize on parts of the list structure, or resources
outside the list structure.

side. A part of a partitionable CPC that can run as a
physical partition and is typically referred to as the
A-side or the B-side.

single point of control. The characteristic a sysplex
displays when you can accomplish a given set of tasks
from a single workstation, even if you need multiple IBM
and vendor products to accomplish that particular set of
tasks.

single system image. The characteristic a product
displays when multiple images of the product can be
viewed and managed as one image.

single-image (SI) mode. A mode of operation for a
multiprocessor (MP) system that allows it to function as
one CPC. By definition, a uniprocessor (UP) operates in
single-image mode. Contrast with physically partitioned
(PP) configuration.

single-MVS environment. An environment that
supports one MVS image. See also MVS image.

single-system sysplex. A sysplex in which only one
MVS system is allowed to be initialized as part of the
sysplex. In a single-system sysplex, XCF provides XCF
services on the system but does not provide signalling
services between MVS systems. See also multisystem
sysplex, XCF-local mode.

SLR. Service Level Reporter.

SMF. System management facilities.

SMP/E. System Modification Program Extended.

SMS. Storage Management Subsystem.

SMS communication data set. The primary means of
communication among systems governed by a single
SMS configuration. The SMS communication data set
(COMMDS) is a VSAM linear data set that contains the
current utilization statistics for each system-managed
volume, which SMS uses to help balance space usage
among systems.

SMS configuration. The SMS definitions and routines
that the Storage Management Subsystem uses to
manage storage.

SMS system group. All systems in a sysplex that
share the same SMS configuration and communications
data sets, minus any systems in the sysplex that are
defined individually in the SMS configuration.

structure. A construct used by MVS to map and
manage storage on a coupling facility. See cache
structure, list structure, and lock structure.

support element. A hardware unit that provides
communications, monitoring, and diagnostic functions to
a central processor complex (CPC).

symmetry. The characteristic of a sysplex where all
systems, or certain subsets of the systems, have the
same hardware and software configurations and share
the same resources.

SYSLOG. System log

sysplex. A set of MVS systems communicating and
cooperating with each other through certain multisystem
hardware components and software services to process
customer workloads. See also MVS system, Parallel
Sysplex.

sysplex couple data set. A couple data set that
contains sysplex-wide data about systems, groups, and
members that use XCF services. All MVS systems in a
sysplex must have connectivity to the sysplex couple
data set. See also couple data set.

Sysplex Timer. An IBM unit that synchronizes the
time-of-day (TOD) clocks in multiple processors or
processor sides. External Time Reference (ETR) is the
MVS generic name for the IBM Sysplex Timer (9037).

system control element (SCE). Hardware that
handles the transfer of data and control information
associated with storage requests between the elements
of the processor.

System/390 microprocessor cluster. A configuration
that consists of central processor complexes (CPCs)
and may have one or more coupling facilities.

T
tightly coupled. Multiple CPs that share storage and
are controlled by a single copy of MVS. See also
loosely coupled, tightly coupled multiprocessor.

Glossary 191

tightly coupled multiprocessor. Any CPC with
multiple CPs.

TOR. Terminal-owning region.

TSCF. Target System Control Facility. The licensed
program System Automation for OS/390 includes all of
the function previosuly provided by TSCF.

U
uniprocessor (UP). A CPC that contains one CP and
is not partitionable.

UP. Uniprocessor.

V
VM. Virtual Machine.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunications Access Method.

W
WLM. MVS workload management.

X
XCF. Cross-system coupling facility.

XCF PR/SM policy. In a multisystem sysplex on
PR/SM, the actions that XCF takes when one MVS
system in the sysplex fails. This policy provides high
availability for multisystem applications in the sysplex.

XCF-local mode. The state of a system in which XCF
provides limited services on one system and does not
provide signalling services between MVS systems. See
also single-system sysplex.

XRF. Extended recovery facility.

192 z/OS V1R1.0 Parallel Sysplex Application Migration

Index

A
AIEXIT parameter 150
AILDELAY parameter 150
AIQMAX parameter 150
AIRDELAY parameter 150
application-owning region (AOR)

clones 10
connection definitions 129
link security 139
parameters for cloning regions 152
session definitions 129
split from TOR 50
target sysplex configuration 20, 21

applications
migration to a sysplex 7, 8

APPLID parameter
startup procedure consideration 157

availability
CICS applications 68

B
backup-while-open (BWO) 79
bind-time security 137
BMP program

convert a CICS shared database program 112

C
cache structures, defining 77
CEDA DEFINE panel 121
central processor complex (CPC) 9
CFDT pools and coupling facility 88
CFDT servers

coupling facility data tables 87
CICS

availability 68
local DL/I 109
recovery consideration 106
shared database program 112
startup procedure 139, 149
system initialization parameters 149
transaction routing facility 49
transaction throughput 67

CICS applications
migration to a sysplex 8

CICS local DL/I
use in a sysplex 109

CICS system data sets 158
CICSplex

description 7
security 137

CICSPlex SM
description 57
manage inter-transaction affinities 102
relation to WLM 146
use in a sysplex 12

CICSPlex SM (continued)
workload balancing algorithms 143
workload management 143
workload separation 143

clones
AOR 10
CICS regions 134
define common parameters 150
IMS subsystems 165
TORs 62

cloning CICS regions 10, 68
CMAS

target sysplex configuration 23
Common Queue Server (CQS) 178
connection definition

application-owning region 129
file-owning region 131
queue-owning region 131
terminal-owning region 125

CONNECTION resource definition
SECURITYNAME parameter 137

converting IMS batch jobs to BMP programs 172, 173
coupling facility 4

and CFDT pools 88
and named counter pools 92
and TS pools 84
defining 77
structures used by DB2 116

coupling facility data table
server 89

coupling facility data table servers 87
coupling facility data tables

defining 89
planning for a sysplex 87

D
data flow

MSC 171
data set eligibility for RLS 74
data tables, eligibility for RLS 74
DATABASE 2 (DB2)

coupling facility maintenance 116
target sysplex configuration 23

Database Recovery Control (DBRC)
use in a sysplex 112

DB/DC environment
use in a sysplex 7

DB2 (DATABASE 2)
data sharing 4
internal resource lock manager 116
naming conventions 115
planning for a sysplex 115
use in a sysplex 4

deadlock detection, defining 78
defining recovery attributes 79
determining CICS response times 146
dividing the IMS network 169, 172

© Copyright IBM Corp. 1994, 2001 193

DRA startup parameter table 111
DTRTRAN system initialization parameter 121, 123
DYNAMIC parameter 121, 124
dynamic transaction routing 49, 50

benefits 10
connection definitions 125
defining resources 121
improved availability 11
improved performance 10
planning 53
security authorization 139
session definitions 125
simplified systems management 11
transaction definitions

defining remote attributes 121
for dynamic routing 123
for static routing 121

use in a sysplex 10
dynamic transaction routing program

CICSPlex SM 57
manage inter-transaction affinities 102
planning 56
providing your own 145
workload management 143

E
EIBTRMID field 70
EXEC CICS START command 69

F
file-owning region (FOR)

connection definitions 131
parameters for cloning regions 154
planning 95, 100
session definitions 131
target sysplex configuration 22

follow-on phase
definition xii

function shipping
description 95

G
generic resources

migration 59
planning 58
planning for using with IMS 178
requirements for using 179
restrictions on using with IMS 180

generic resources function
description 13

I
ICF catalog 79
IMS 6

application compatibility 7
automatic restart manager 166
availability 174

IMS 6 (continued)
batch, converting to BMP programs 172, 173
cloning IMS subsystems 165, 166
converting batch jobs to BMP programs 172, 173
data compatibility 7
data sets

sharing between IMS subsystems 165
Database Recovery Control 112
DB2 considerations 23
DEDB considerations 23
dividing the network 169, 172
evolution 6
examples 165

defining an LU name 168
IMSID and system definition 166
LTERM naming convention 168
overriding system definition 165

IMSCTRL macro 166
IMSID

definition 166
ensuring unique 166, 167
example 166

internal resource lock manager 113
IRLM, restriction sharing with DB2 and IMS 28
logical terminal (LTERM)

APPC/IMS 168
definition 168
naming convention, example 168

LU names
defining, example 168
ensuring unique 168, 169

migrating applications 163, 174
migration to a Parallel Sysplex 165
moving 166

IMS subsystems to other MVS images 166
terminals, LU 6.2 applications, or users within a

network 168
MSC 169

advantages 169
balancing workload 170
definition 169
Input Message Routine exit routine

(DFSNPRT0) 170
minimizing network outages 170
planning for 169
Program Routing exit routine (DFSCMPR0) 170
transaction balancing 170
transaction flow 171

MVS automatic restart manager 166
MVS resource management 173
MVS workload manager 173
overriding system definition, example 165
partitioning applications 169
planning for a Parallel Parallel Sysplex

environment 174
planning for a sysplex environment 163
planning for the network 169
planning for Version 6 175
recovery 174
reducing the batch window 173
restriction sharing IRLM with DB2 and IMS 28

194 z/OS V1R1.0 Parallel Sysplex Application Migration

IMS 6 (continued)
sysplex data sharing 109
system definition stage 1 165
target Sysplex configuration 23
terminal names, ensuring unique 168, 169
use in a sysplex 6
user IDs, ensuring unique 168, 169

IMS application migration 7
IMS data sharing 4
IMS Database Control (DBCTL)

creating for a sysplex 111
migrate from CICS local DL/I 109
naming conventions 111
planning 109
startup procedure 157
target sysplex configuration 22
use in a Sysplex 4

IMSID 166
INQUIRE command

transaction-system affinity 54
integrity of data 76
inter-transaction affinity

description 54
detection 54
manage with CICSPlex SM 102
suspect programming techniques

transient data 104
temporary storage queue 101
transient data 101
workload balancing 145

internal resource lock manager (IRLM)
used by DB2 116
used by IMS 113

IRLM (Internal Resource Lock Manager)
migration 175

L
link userid

authorization 141
naming convention 141

locks 76
log manager

planning log streams 117
log streams

planning 117
logical terminal (LTERM), IMS 168
LU name

workload separation 12

M
migrating

IRLM (Internal Resource Lock Manager) 175
migrating IMS applications 163, 174
MNSUBSYS parameter

startup procedure consideration 157
MRO, multiregion operation

transaction routing 49
MSC (IMS Multiple Systems Coupling) 169

MSC (Multiple Systems Coupling)
data flow 171

Multiple Systems Coupling (MSC) 169
multiregion operation

function shipping 95
multiregion operation (MRO)

bind-time security 137
connection definitions 125
link security 140
session definitions 125
transaction routing 49
use in a CICSplex 7

MVS (Multiple Virtual Storage)
use of this term xii

MVS workload manager (WLM)
planning for a CICSplex 143
relation to CICSPlex SM 146
service class definition

CICS response times 146

N
named counter

server 93
named counter pools and coupling facility 92
named counters

defining 93
named number counters

planning for a sysplex 91
servers 91

naming conventions 15
applying to APPLID 34
applying to connections 36
applying to data sets 44, 158
applying to JOB names 43
applying to SESSIONS 39
applying to subsystem names 34
applying to SYSIDNT 36
applying to terminals 42
applying to VTAM APPL definitions 35, 36
applying to VTAM generic resource 34
description 31
for use with CICS 27
objectives 30

NETNAME
workload separation 12

Notices 183

P
Parallel Sysplex data sharing

migration 175
Parallel Sysplex environment

migrating 175
persistent LU-LU sessions

description 14
planning 62

product availability
follow-on phase xii

Index 195

Q
queue-owning region (QOR)

connection definitions 131
create 102
define as remote 102
inter-transaction affinity 101
naming conventions 102
parameters for cloning regions 155
planning 100
session definitions 131
target sysplex configuration 22
transient data 104

R
RACF

access list
APPL profile 138

bind-time security 137
use in a sysplex 15

read integrity 76
record-level sharing (RLS) 73
recovery attributes, defining 79
REMOTENAME parameter 122, 124
REMOTESYSTEM parameter 122, 124
resource manager interface (RMI)

use in a sysplex 8
resource manager regions 8

reasons for creating
availability 9
enhanced multiprocessor performance 9
faster restart 9
virtual storage constraint relief 9
workload separation 9

restriction sharing IRLM with DB2 and IMS 28
retained locks 76
RLS, record-level sharing

planning for CICS 73
RLS migration 73

S
SECURITYNAME parameter 137
session definition

application-owning region 129
file-owning region 131
queue-owning region 131
terminal-owning region 125

SET command
transaction-system affinity 54

shared database program
convert to a BMP program 112

shared message queues
benefits of using 176
planning for 176
required components for 177

shared queues
defining 84

SMS storage classes, defining 78
SRVCLASS parameter of IEAICSxx 147
START command

dynamic transaction routing 69

START command (continued)
TERMID keyword 70

startup procedure
CICS regions 149
common parameters in SYSIN data set 156
DBCTL subsystem name 157
defining CICS region userids 139
sample job 158
unique parameters 157

static transaction routing 49, 50
SYSEVENT class 157
SYSIDNT parameter

startup procedure consideration 157
sysplex

benefits of running CICS 7
benefits of running IMS 6

system initialization parameters 149
system initialization table 149

T
temporary storage data sharing

planning for a sysplex 83
temporary storage queue

definition in a sysplex 100
temporary storage table (TST) 102
TERMID

workload separation 12
terminal-owning region (TOR)

clone 62
connection definitions 125
omit transaction resource definitions 123
parameters for cloning regions 150
session definitions 125
split from AOR 50
target sysplex configuration 20

transaction affinity
description 53
inter-transaction affinity 54
transaction-system affinity 54

transaction affinity utility 54
transaction identifier (TRANSID)

workload separation 12
transaction routing 49

CICS 49
dynamic transaction routing 49
static transaction routing 49

transaction routing facility 49
transaction-system affinity 54
transaction throughput

in a sysplex 67
TRANSID 12
transient data queue

definition in a sysplex 100, 104
TS data sharing 83

CFDT server 89
defining coupling facility data tables 89
defining named counters 93
defining shared queues 84
named counter server 93
security 86, 90, 94
server 85

196 z/OS V1R1.0 Parallel Sysplex Application Migration

TS data sharing 83 (continued)
subsystem interface 85, 89, 93
TS data sharing server 85

TS pools and coupling facility 84

TS server

non-recoverable TS data sharing 83

U
USERID 12

userid identifier (USERID)

workload separation 12

V
VSAM

files owned by an FOR 95

VSAM record-level sharing (RLS)

CFLEVEL required 74, 118
choosing between RLS and non-RLS mode 74
data set eligibility 74
planning for CICS 73

VTAM

generic resources function 13, 58
persistent LU-LU sessions 14, 62
use in a sysplex 13

W
workload balancing

algorithms 143
shortest queue 144

workload management

determining CICS response times 146
planning for a CICSplex 143
using SRVCLASS parameter, example of 147

workload separation 143

Index 197

198 z/OS V1R1.0 Parallel Sysplex Application Migration

Readers’ Comments — We’d Like to Hear from You

z/OS
Parallel Sysplex Application Migration

Publication No. SA22-7662-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7662-00

SA22-7662-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

File Number: S370/S390-34
Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7662-00

	Contents
	Figures
	About This Publication
	Who Should Use This Publication
	How to Use This Publication
	Notes on Terminology
	Notes on Product Availability

	Where to Find More Information
	Related Publications in Other Libraries
	CICS
	IMS
	DB2
	VTAM
	OS/390 or z/OS
	Processor Resource/Systems Manager (PR/SM)

	Using LookAt to look up message explanations
	Accessing licensed books on the Web

	Part 1. Introduction
	Chapter 1. Sysplex Benefits for Online TransactionProcessing
	Benefits of Data Sharing in a Sysplex
	IMS DB Multisystem Data Sharing
	DB2 Multisystem Data Sharing
	VSAM Record Level Sharing
	CICS Data Sharing Facilities
	Temporary Storage Data Sharing
	Coupling Facility Data Tables
	Named Number Counters

	Benefits of Running IMS in a Sysplex Environment
	Running IMS TM in a Sysplex Environment
	Running IMS DB in a Sysplex Environment
	Application and Data Compatibility

	Benefits of Running CICS in a Sysplex Environment
	A CICS Complex (CICSplex)
	The CICS Resource Manager Regions for Sysplex Operation
	Application and Data Compatibility
	Pre-sysplex Reasons for Splitting CICS into Resource ManagerRegions
	Multiprocessor Performance
	Workload Separation
	Virtual Storage Constraint Relief
	Availability
	Faster Restart
	Managing Resources Between Shifts

	Extra Benefits Provided by the Sysplex
	Improved Performance
	Improved Availability
	Simplified Systems Management

	CICSPlex System Manager/ESA
	Cross-System MRO

	General Considerations
	VTAM Support for the Sysplex
	VTAM Generic Resources
	How DB2 Uses VTAM Generic Resources
	VTAM Persistent LU-LU Sessions

	Security

	Naming Conventions

	Chapter 2. Planning the Subsystem Configuration for aSysplex
	Prerequisite Hardware and Software
	The Target Configuration
	The Target Subsystems
	The CICS Terminal-Owning Regions
	The CICS Application-Owning Regions
	The CICS File-Owning Regions
	The CICS Queue-Owning Regions
	The IMS DBCTL Environment
	The DB2 Subsystems
	The IMS Online Environment
	The CICSPlex SM Address Space

	Part 2. Migrating CICS Applications
	Chapter 3. Planning Naming Conventions for CICS andRelated Subsystems
	What to Consider When Planning Naming Conventions
	CICS
	IMS DB
	DB2
	IRLM
	CICSPlex SM
	Other Considerations
	Cloning
	CICS Connectivity
	Workload Management
	Recovery
	Full Use of the Character Set
	Four-Character Naming Restriction

	Designing Effective Naming Conventions
	The Naming Convention
	Applying the Naming Conventions for CICS
	For CICS VTAM APPL Names (APPLIDs)
	Specific CICS APPLIDs
	VTAM Generic Resource Names
	VTAM APPL Definitions
	RACF APPL profiles

	For SYSIDNT Names
	For CONNECTION Names
	Generic Connection Names

	For SESSIONS Definitions with and without Prefixes
	Defining Sessions With Predefined Prefixes

	For TERMINAL Names
	For CICS JOB Names
	Batch Jobs
	Started Tasks with JOB support

	For Data Set Names

	Sharing CICS System Data Sets
	CICS System Definition Data Set
	CICS Journal Partitioned Data Set
	SYSIN Data Set
	Defining the Shared CICS Data Sets

	Example of Using the Naming Convention
	Six CPCs and Six MVS Images
	The Terminal-Owning Regions
	IMS DBCTL and DB2 Workloads
	The Application-Owning Regions
	Connections

	Chapter 4. Planning the Terminal-Owning Regions
	Transaction Routing
	Static and Dynamic Transaction Routing

	Splitting CICS into Separate Terminal- and Application-OwningRegions
	Planning Migration to Dynamic Transaction Routing
	Transaction Affinities
	Inter-transaction Affinity
	Transaction-System Affinity

	Detecting Inter-transaction Affinities
	Planning a Dynamic Transaction Routing Program
	Defining Transaction Routing Tables
	Identifying Inter-transaction Affinities
	Maintaining the Status of Application-Owning Regions
	Monitoring the Performance of Application-Owning Regions

	Using CICSPlex SM

	Planning for VTAM Generic Resources
	Defining the Coupling Facility Structure
	Defining Security Authorizations
	Setting Trace Options
	Defining the Generic Resource Name to CICS
	Migrating to VTAM Generic Resources
	Special Considerations for Non-Autoinstalled Terminals andConnections
	Special Considerations for Outbound LU6 Connections

	Implementing VTAM Persistent LU-LU Sessions
	Cloning the CICS Terminal-Owning Regions

	Chapter 5. Planning the Application-Owning Regions
	Achieving the Optimum Level of Processor Utilization
	The Effect of Workload Balancing on Capacity Planning
	CICS and Multiprocessor Capacity of an n-way CPC
	Allowing for Other Work

	The Ratio of AORs to TORs

	Achieving the Required Transaction Throughput
	Estimating the Throughput Rate

	Achieving the Required Level of Availability
	START Commands In a Dynamic Transaction Routing Environment
	Start Commands that Do Not Specify TERMID
	START Commands that Specify TERMID

	Chapter 6. Planning for VSAM Record-Level Sharing
	Concepts and use of RLS
	Coupling Facility Requirements for VSAM Record-level Sharing
	Data Set Eligibility
	Restrictions for Data Sets Defined with IMBED
	Choosing Between RLS-Mode and Non-RLS Mode
	Restricting Switching Between RLS Mode and Non-RLS Mode Access
	General Rule About Switching Opening Modes
	Switching Modes Exception for Read-Only Operations
	Recommended Procedure

	Resolving Retained Locks

	Preparing for RLS
	Read Integrity
	The LOCKED Exception Condition
	Defining the Coupling Facility Structures
	Defining the Cache Structures and Cache Sets
	Defining the Lock Structure
	Defining Structures for Use by the CICS Log Manager

	Defining the Sharing Control Data Sets
	Defining SMS Storage Classes
	Defining IGDSMSxx Parameters in SYS1.PARMLIB
	Defining Deadlock Time Intervals
	Defining recovery attributes for VSAM Data Sets

	Planning Migration and Coexistence
	Fallback Planning

	Chapter 7. Planning for Temporary Storage Data Sharing
	TS Pools and the Coupling Facility
	Defining Shared TS Queues
	The TS Data Sharing Server
	The Subsystem Interface
	Security

	Chapter 8. Planning for Coupling Facility Data Tables
	Comparison with User-maintained Data Tables
	Coupling Facility Data Table Models
	CFDT Pools and the Coupling Facility
	Defining a Coupling Facility Data Table
	The Coupling Facility Data Table Server
	The Subsystem Interface
	Security

	Chapter 9. Planning for Named Number Counters
	The Named Counter Application Programming Interfaces
	Named Counter Pools and the Coupling Facility
	Defining a Named Counter Options Table
	The Named Counter Server
	The Subsystem Interface
	Security

	Chapter 10. Planning Resource-Owning Regions
	Planning the File-Owning Regions
	Function Shipping
	Planning the Number of File-Owning Regions
	Avoiding Bottlenecks in the CICSplex

	Ensuring Availability of the Data
	Capacity Planning Considerations
	Data Integrity Considerations
	The In-doubt Period

	Planning the Queue-Owning Regions
	Avoiding Inter-transaction Affinity Associated with CICS Queues
	Creating a Queue-Owning Region
	Naming Conventions for Remote Temporary Storage Queues
	Using Transient Data in a Queue-Owning Region

	Data Integrity Considerations
	Performance and Availability

	Chapter 11. Planning for IMS DBCTL Multisystem DataSharing with CICS
	Migrating from CICS Local DL/I to IMS DBCTL
	When Databases Need to be Migrated
	Migrating CICS Parameters to IMS DBCTL
	Defining the Number of DL/I Threads

	Creating Multiple DBCTL Subsystems
	The CICS Database Resource Adapter Startup Table
	Naming the DBCTL Subsystems

	Converting a CICS Shared-Database Program to a BMP Program
	Creating the Data Sharing Environment
	Database Recovery Control
	Internal Resource Lock Manager (IRLM)
	Defining IMS Coupling Facility Structures
	Rebuilding IMS Coupling Facility Structures after Failure

	Chapter 12. Planning for DB2 Subsystem Access from CICSRegions
	Creating Multiple DB2 Data Sharing Subsystems
	Using a Common Resource Control Table
	Naming the DB2 Subsystems

	Creating the Data Sharing Environment
	Defining DB2 Coupling Facility Structures
	Rebuilding DB2 Coupling Facility Structures after Failure

	Internal Resource Lock Manager (IRLM)

	Chapter 13. Planning the Log Streams
	The MVS System Logger and the CICS Log Manager
	Coupling Facility Requirements for the System Logger

	Defining the logger environment for CICS

	Chapter 14. Planning the Resource Definitions
	Defining Remote Attributes for Transaction Routing
	Defining Transactions for Static Transaction Routing
	Recommendations

	Defining Transactions for Dynamic Transaction Routing
	No Transaction Definitions in the Terminal-Owning Regions
	Defining specific transaction definitions

	Defining Connection and Session Definitions
	Links from the Terminal-Owning Regions
	Links from the Application-Owning Regions
	Links from the File-Owning and Queue-Owning Regions

	Cloning CICS Regions
	Cloning Regions of the Same Type
	Defining Common System Initialization Parameters
	Defining the Unique System Initialization Parameters
	Examples of SYSIN Members for Cloning Application-Owning Regions

	Chapter 15. Planning CICSplex Security
	Defining Bind-Time and Link Security
	Defining Bind-Time Security
	Defining Link Security

	Authenticating Users in Remote MRO Regions
	Authenticating Users Associated with MRO Requests
	Authenticating Users Signing On Directly to Remote Regions

	Guaranteeing Equal Access to Cloned Application-Owning Regions
	Defining CICS Region Userids for Started Jobs

	MRO Link Security Considerations
	Bypassing Link Security Checking
	Authorizing the Link Userid
	Naming Convention for Link Userids

	Security in the Receiving Regions

	Chapter 16. Planning for Workload Management
	Using CICSPlex SM for Workload Balancing and Workload Separation
	Workload Separation
	Workload Management
	Where to Start

	Implementing Shortest-Queue Workload Balancing
	The CICSPlex SM Workload Management Entities

	Providing a Dynamic Transaction Routing Program
	The MVS Workload Manager
	Preparing to Migrate to Goal-Mode Workload Management
	Determining CICS response times before defining goals

	Chapter 17. Planning the CICS Startup Procedures
	The CICS System Initialization Parameters
	Using the Default System Initialization Table
	Defining Common System Initialization Parameters for Cloned Regions
	The Terminal-Owning Region's Parameters
	Example
	The Application-Owning Region's Parameters
	Example
	The File-Owning Region's Parameters
	Example
	The Queue-Owning Region's Parameters
	Example

	Using SYSIN for Common System Initialization Parameters
	Using the PARM Parameter for Unique System Initialization Parameters
	Specifying the DBCTL Subsystem Name

	The CICS System Data Sets
	Defining the CICS Startup Procedure for Started Jobs
	Starting the CICS Regions

	Part 3. Migrating IMS Applications
	Chapter 18. Planning for IMS TM in a Sysplex Environment
	Cloning Your IMS Subsystems
	What to Share between IMS Subsystems in a Parallel Sysplex

	Ensure Unique IMSIDs
	Ensure Unique Terminal Names, LU Names, and User IDs
	Divide Your Network
	Advantages of MSC
	Planning for MSC
	Workload Balancing Using MSC
	Flow of Data within Multiple Systems

	Convert Batch Jobs to BMP Programs
	MVS Resource Management
	Availability and Recovery

	Chapter 19. Planning for IMS/ESA Version 6 in a ParallelSysplex Environment
	Parallel Sysplex Migration Requirements
	Migrating IMS
	Migrating Your Data-Sharing Environment

	Planning for Migration to IMS Version 6
	Planning for a Shared-Queues Environment
	Migrating to a Shared-Queues and Shared-EMH Environment
	Benefits of Using Shared Queues
	Required Components of a Shared-Queues Environment
	Planning for the Common Queue Server (CQS)

	Planning for Using VTAM Generic Resource Groups
	Requirements for Using VTAM Generic Resource Groups
	Restrictions on Using VTAM Generic Resource Groups

	Planning for OSAM Database Cache Migration
	Planning for Shared SDEPs Migration
	Planning for Shared VSO DEDB Areas Migration

	Part 4. Appendixes
	Appendix. Notices
	Trademarks

	Glossary
	Sources of Terms and Definitions
	Explanation of Cross-References

	Index
	Readers’ Comments — We'd Like to Hear from You

